Zhang Yong, Li Yibo, Luan Xi, Meng Bin, Liu Jinsong, Lu Yan
College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Light Alloy Research Institute, Central South University, Changsha 410083, China.
Polymers (Basel). 2025 Jun 20;17(13):1721. doi: 10.3390/polym17131721.
This study proposes a novel algorithm for generating representative volume elements which mitigate microstructural inhomogeneities in fiber-reinforced composites. The algorithm integrates void characteristics obtained from micro-computed tomography to more accurate microstructure models. Based on these models, the effects of void content, spatial distribution, and void diameter on the mechanical behavior of CF/PEEK composites are systematically evaluated using finite element analysis and experimental validation. The results reveal that void content significantly reduces transverse tensile strength and ductility, while void size further accelerates failure and enhances brittleness. In contrast, void distribution has minimal influence on the transverse mechanical response. These findings not only offer qualitative insights into void-induced damage mechanisms but also provide a theoretical basis for optimizing microstructures to enhance the mechanical performance of CF/PEEK and similar composite systems. Finally, the limitations of this study have been discussed, and directions for future research are proposed.
本研究提出了一种用于生成代表性体积单元的新算法,该算法可减轻纤维增强复合材料中的微观结构不均匀性。该算法将从微观计算机断层扫描获得的孔隙特征整合到更精确的微观结构模型中。基于这些模型,使用有限元分析和实验验证系统地评估了孔隙率、空间分布和孔隙直径对CF/PEEK复合材料力学行为的影响。结果表明,孔隙率显著降低了横向拉伸强度和延展性,而孔隙尺寸进一步加速了破坏并增强了脆性。相比之下,孔隙分布对横向力学响应的影响最小。这些发现不仅为孔隙引发的损伤机制提供了定性见解,还为优化微观结构以提高CF/PEEK及类似复合材料系统的力学性能提供了理论基础。最后,讨论了本研究的局限性,并提出了未来的研究方向。