Tan Dongmei, Li Wenjie, Tao Yu, Ji Baifeng
Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572000, China.
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
Sensors (Basel). 2025 Jun 21;25(13):3869. doi: 10.3390/s25133869.
To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation detection and utilizes least-squares plane fitting for quantitative feature extraction. When applied to the approach span of a cross-river bridge in Hubei Province, China, this method leverages dense point clouds (greater than 500 points per square meter) acquired using a Leica RTC360 scanner. Data preprocessing incorporates curvature-adaptive cascade denoising, achieving over 98% noise removal while retaining more than 95% of structural features, along with octree-based simplification. By extracting multi-level slice features from bridge decks and piers, this method enables the simultaneous analysis of global trends and local deformations. The results revealed significant deformation, with an average settlement of 8.2 mm in the left deck area. The bridge deck exhibited a deformation trend characterized by left and higher right in the vertical direction, while the bridge piers displayed noticeable tilting, particularly with the maximum offset of the rear pier columns reaching 182.2 mm, which exceeded the deformation of the front pier. The bridge deck's micro-settlement error was ±1.2 mm, and the pier inclination error was ±2.8 mm, meeting the Chinese Highway Bridge Maintenance Code (JTG H11-2004) and the American Association of State Highway and Transportation Officials (AASHTO) standards, and the multi-scale algorithm achieved engineering-level accuracy. Utilizing point cloud densities >500 pt/m, the M3C2 algorithm achieved a spatial resolution of 0.5 mm, enabling sub-millimeter full-field analysis for complex scenarios. This method significantly enhances bridge safety monitoring precision, enhances the precision of intelligent systems monitoring, and supports the development of targeted systems as pile foundation reinforcement efforts and as improvements to foundations.
为解决传统单点监测技术效率低下和空间分辨率有限的问题,本研究提出了一种多尺度分析方法,该方法将多尺度模型到模型云比较(M3C2)算法与最小二乘平面拟合相结合。这种方法采用M3C2算法进行定性全场变形检测,并利用最小二乘平面拟合进行定量特征提取。当应用于中国湖北省一座跨河桥梁的引桥跨度时,该方法利用了使用徕卡RTC360扫描仪获取的密集点云(每平方米大于500个点)。数据预处理包括曲率自适应级联去噪,在保留超过95%的结构特征的同时实现了超过98%的噪声去除,以及基于八叉树的简化。通过从桥面板和桥墩提取多级切片特征,该方法能够同时分析全局趋势和局部变形。结果显示存在明显变形,左桥面板区域平均沉降8.2毫米。桥面板在垂直方向上呈现出左高右低的变形趋势,而桥墩则表现出明显的倾斜,特别是后桥墩柱的最大偏移量达到182.2毫米,超过了前桥墩的变形。桥面板的微沉降误差为±1.2毫米,桥墩倾斜误差为±2.8毫米,符合中国《公路桥梁养护规范》(JTG H11-2004)和美国州公路和运输官员协会(AASHTO)标准,且多尺度算法达到了工程级精度。利用点云密度>500 pt/m,M3C2算法实现了0.5毫米的空间分辨率,能够对复杂场景进行亚毫米级全场分析。该方法显著提高了桥梁安全监测精度,提升了智能系统监测的精度,并支持针对性系统的开发,如桩基加固和基础改进。