文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于核性白内障检测的人工智能移动应用程序。

AI-Powered Mobile App for Nuclear Cataract Detection.

作者信息

Ignatowicz Alicja Anna, Marciniak Tomasz, Marciniak Elżbieta

机构信息

Division of Electronic Systems and Signal Processing, Institute of Automatic Control and Robotics, Poznan University of Technology, 60-965 Poznan, Poland.

Department of Ophthalmology, Chair of Ophthalmology and Optometry, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, 60-780 Poznan, Poland.

出版信息

Sensors (Basel). 2025 Jun 25;25(13):3954. doi: 10.3390/s25133954.


DOI:10.3390/s25133954
PMID:40648211
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12252290/
Abstract

Cataract remains the leading cause of blindness worldwide, and the number of individuals affected by this condition is expected to rise significantly due to global population ageing. Early diagnosis is crucial, as delayed treatment may result in irreversible vision loss. This study explores and presents a mobile application for Android devices designed for the detection of cataracts using deep learning models. The proposed solution utilizes a multi-stage classification approach to analyze ocular images acquired with a slit lamp, sourced from the Nuclear Cataract Database for Biomedical and Machine Learning Applications. The process involves identifying pathological features and assessing the severity of the detected condition, enabling comprehensive characterization of the NC (nuclear cataract) of cataract progression based on the LOCS III scale classification. The evaluation included a range of convolutional neural network architectures, from larger models like VGG16 and ResNet50, to lighter alternatives such as VGG11, ResNet18, MobileNetV2, and EfficientNet-B0. All models demonstrated comparable performance, with classification accuracies exceeding 91-94.5%. The trained models were optimized for mobile deployment, enabling real-time analysis of eye images captured with the device camera or selected from local storage. The presented mobile application, trained and validated on authentic clinician-labeled pictures, represents a significant advancement over existing mobile tools. The preliminary evaluations demonstrated a high accuracy in cataract detection and severity grading. These results confirm the approach is feasible and will serve as the foundation for ongoing development and extensions.

摘要

白内障仍然是全球失明的主要原因,由于全球人口老龄化,预计受这种疾病影响的人数将大幅上升。早期诊断至关重要,因为延迟治疗可能导致不可逆转的视力丧失。本研究探索并展示了一款适用于安卓设备的移动应用程序,该程序旨在使用深度学习模型检测白内障。所提出的解决方案采用多阶段分类方法,分析用裂隙灯采集的眼部图像,这些图像来自用于生物医学和机器学习应用的核性白内障数据库。该过程包括识别病理特征和评估检测到的病情严重程度,从而能够根据LOCS III量表分类对白内障进展的核性白内障(NC)进行全面表征。评估包括一系列卷积神经网络架构,从像VGG16和ResNet50这样的大型模型,到像VGG11、ResNet18、MobileNetV2和EfficientNet - B0这样的轻量级模型。所有模型都表现出可比的性能,分类准确率超过91% - 94.5%。经过训练的模型针对移动部署进行了优化,能够对通过设备摄像头拍摄或从本地存储中选择的眼部图像进行实时分析。所展示的移动应用程序在真实的临床医生标记图片上进行了训练和验证,代表了相对于现有移动工具的重大进步。初步评估显示在白内障检测和严重程度分级方面具有很高的准确性。这些结果证实了该方法是可行的,并将作为持续开发和扩展的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/1e8fd534bae5/sensors-25-03954-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/e3890dc60f80/sensors-25-03954-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/4f14266c5317/sensors-25-03954-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/cf9769903acd/sensors-25-03954-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/3004a8121570/sensors-25-03954-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/5abf6be445c6/sensors-25-03954-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/e2e9bc6e112b/sensors-25-03954-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/de002b0714e9/sensors-25-03954-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/3d241f6fd2ae/sensors-25-03954-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/75d2db4bc230/sensors-25-03954-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/70f4897a303e/sensors-25-03954-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/1e8fd534bae5/sensors-25-03954-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/e3890dc60f80/sensors-25-03954-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/4f14266c5317/sensors-25-03954-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/cf9769903acd/sensors-25-03954-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/3004a8121570/sensors-25-03954-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/5abf6be445c6/sensors-25-03954-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/e2e9bc6e112b/sensors-25-03954-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/de002b0714e9/sensors-25-03954-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/3d241f6fd2ae/sensors-25-03954-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/75d2db4bc230/sensors-25-03954-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/70f4897a303e/sensors-25-03954-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69c4/12252290/1e8fd534bae5/sensors-25-03954-g011.jpg

相似文献

[1]
AI-Powered Mobile App for Nuclear Cataract Detection.

Sensors (Basel). 2025-6-25

[2]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[3]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[4]
Facial Emotion Recognition of 16 Distinct Emotions From Smartphone Videos: Comparative Study of Machine Learning and Human Performance.

J Med Internet Res. 2025-7-2

[5]
Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease.

Cochrane Database Syst Rev. 2017-5-23

[6]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[7]
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.

Cochrane Database Syst Rev. 2015-7-27

[8]
Trifocal versus extended depth of focus (EDOF) intraocular lenses after cataract extraction.

Cochrane Database Syst Rev. 2024-7-10

[9]
BlockDroid: detection of Android malware from images using lightweight convolutional neural network models with ensemble learning and blockchain for mobile devices.

PeerJ Comput Sci. 2025-5-30

[10]
Improving reliability of movement assessment in Parkinson's disease using computer vision-based automated severity estimation.

J Parkinsons Dis. 2025-3

本文引用的文献

[1]
Cataracts: A Review.

JAMA. 2025-6-17

[2]
Cataract-1K Dataset for Deep-Learning-Assisted Analysis of Cataract Surgery Videos.

Sci Data. 2024-4-12

[3]
Global estimates on the number of people blind or visually impaired by cataract: a meta-analysis from 2000 to 2020.

Eye (Lond). 2024-8

[4]
Clinical Utility of Smartphone Applications in Ophthalmology: A Systematic Review.

Ophthalmol Sci. 2023-5-31

[5]
Comparison of smartphone application-based visual acuity with traditional visual acuity chart for use in tele-ophthalmology.

Taiwan J Ophthalmol. 2022-5-13

[6]
DryEyeRhythm: A reliable and valid smartphone application for the diagnosis assistance of dry eye.

Ocul Surf. 2022-7

[7]
Unsupervised Deep Anomaly Detection for Medical Images Using an Improved Adversarial Autoencoder.

J Digit Imaging. 2022-4

[8]
Detecting Cataract Using Smartphones.

IEEE J Transl Eng Health Med. 2021-4-20

[9]
Cataract and systemic disease: A review.

Clin Exp Ophthalmol. 2021-3

[10]
Convolutional autoencoder based model HistoCAE for segmentation of viable tumor regions in liver whole-slide images.

Sci Rep. 2021-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索