Godja Norica, Assadollahi Saied, Hütter Melanie, Mehrabi Pooyan, Khajehmeymandi Narges, Schalkhammer Thomas, Munteanu Florentina-Daniela
Interdisciplinary School of Doctoral Studies, "Aurel Vlaicu" University of Arad, 2-4 Elena Drăgoi Str., 310330 Arad, Romania.
Attophotonics Bioscieneces GmbH, Viktor Kaplan Str. 2E, 2700 Wiener Neustadt, Austria.
Sensors (Basel). 2025 Jun 25;25(13):3959. doi: 10.3390/s25133959.
Nickel's durability and catalytic properties make it essential in the aerospace, automotive, electronics, and fuel cell technology industries. Wastewater analysis typically relies on sensitive but costly techniques such as ICP-MS, AAS, and ICP-AES, which require complex equipment and are unsuitable for on-site testing. This study introduces a novel screen-printed electrode array with 16 chemically and, optionally, electrochemically coated Au electrodes. Its electrochemical response to Ni was tested using NaSO and ChCl-EG deep eutectic solvents as electrolytes. Ni solutions were prepared from NiCl·6HO, NiSO·6HO, and dry NiCl. In NaSO, the linear detection ranges were 20-196 mM for NiCl·6HO and 89-329 mM for NiSO·6HO. High Ni concentrations (10-500 mM) were used to simulate industrial conditions. Two linear ranges were observed, likely due to differences in electrochemical behaviour between NiCl·6HO and NiSO·6HO, despite the identical NaSO electrolyte. Anion effects (Cl vs. SO) may influence response via complexation or ion pairing. In ChCl-EG, a linear range of 0.5-10 mM (R = 0.9995) and a detection limit of 1.6 µM were achieved. With a small electrolyte volume (100-200 µL), nickel detection in the nanomole range is possible. A key advantage is the array's ability to analyze multiple analytes simultaneously via customizable electrode configurations. Future research will focus on nickel detection in industrial wastewater and its potential in the multiplexed analysis of toxic metals. The array also holds promise for medical diagnostics and food safety applications using thiol/Au-based capture molecules.
镍的耐久性和催化性能使其在航空航天、汽车、电子和燃料电池技术行业中至关重要。废水分析通常依赖于诸如电感耦合等离子体质谱法(ICP-MS)、原子吸收光谱法(AAS)和电感耦合等离子体发射光谱法(ICP-AES)等灵敏但成本高昂的技术,这些技术需要复杂的设备,且不适用于现场检测。本研究介绍了一种新型的丝网印刷电极阵列,它带有16个经过化学涂覆以及(可选)电化学涂覆的金电极。使用NaSO和氯化胆碱-乙二醇(ChCl-EG)深共熔溶剂作为电解质,测试了其对镍的电化学响应。镍溶液由六水合氯化镍(NiCl·6HO)、六水合硫酸镍(NiSO·6HO)和无水氯化镍制备而成。在NaSO中,六水合氯化镍的线性检测范围为20 - 196 mM,六水合硫酸镍的线性检测范围为89 - 329 mM。使用高镍浓度(10 - 500 mM)来模拟工业条件。观察到了两个线性范围,这可能是由于尽管电解质NaSO相同,但六水合氯化镍和六水合硫酸镍之间的电化学行为存在差异。阴离子效应(Cl对SO)可能通过络合或离子配对影响响应。在ChCl-EG中,实现了0.5 - 10 mM的线性范围(R = 0.9995)以及1.6 µM的检测限。由于电解质体积小(100 - 200 µL),能够检测纳摩尔范围内的镍。一个关键优势是该阵列能够通过可定制的电极配置同时分析多种分析物。未来的研究将集中于工业废水中镍的检测及其在有毒金属多重分析中的潜力。该阵列在使用基于硫醇/金的捕获分子进行医学诊断和食品安全应用方面也具有前景。