Liu Xiuwen, Liu Mingchen, Yin Yong
Key Laboratory of Marine Simulation and Control, Navigation College, Dalian Maritime University, Dalian 116026, China.
Sensors (Basel). 2025 Jun 26;25(13):3979. doi: 10.3390/s25133979.
Ensuring navigational safety in nearshore waters is essential for the sustainable development of the shipping economy. Accurate ship identification and classification are central to this objective, underscoring the critical importance of ship detection technology. However, compared to open-sea surface, dense vessel distributions and complex backgrounds in nearshore areas substantially limit detection efficacy. Infrared vision sensors offer distinct advantages over visible light by enabling reliable target detection in all weather conditions. This study therefore proposes CGSE-YOLOv5s, an enhanced YOLOv5s-based algorithm specifically designed for complex infrared nearshore scenarios. Three key improvements are introduced: (1) Contrast Limited Adaptive Histogram Equalization integrated with Gaussian Filtering enhances target edge sharpness; (2) Replacement of the feature pyramid network's C3 module with a Swin Transformer-based C3STR module reduces multi-scale false detections; and (3) Implementation of an Efficient Channel Attention mechanism amplifies critical target features. Experimental results demonstrate that CGSE-YOLOv5s achieves a mean average precision (mAP@0.5) of 94.8%, outperforming YOLOv5s by 1.3% and surpassing other detection algorithms.
确保近岸水域的航行安全对航运经济的可持续发展至关重要。准确的船舶识别和分类是实现这一目标的核心,凸显了船舶检测技术的至关重要性。然而,与公海表面相比,近岸区域密集的船只分布和复杂的背景极大地限制了检测效果。红外视觉传感器通过在所有天气条件下实现可靠的目标检测,相对于可见光具有明显优势。因此,本研究提出了CGSE-YOLOv5s,这是一种基于YOLOv5s增强的算法,专门为复杂的近岸红外场景设计。引入了三项关键改进:(1)对比度受限自适应直方图均衡化与高斯滤波相结合,提高了目标边缘清晰度;(2)用基于Swin Transformer的C3STR模块替换特征金字塔网络的C3模块,减少了多尺度误检;(3)实施高效通道注意力机制,增强了关键目标特征。实验结果表明,CGSE-YOLOv5s的平均精度均值(mAP@0.5)达到94.8%,比YOLOv5s高出1.3%,并超过了其他检测算法。