Suppr超能文献

一种基于动态稀疏注意力的Res2Net增强型高效细粒度识别方法。

An Efficient Fine-Grained Recognition Method Enhanced by Res2Net Based on Dynamic Sparse Attention.

作者信息

Niu Qifeng, Wang Hui, Xu Feng

机构信息

School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China.

School of Information and Software Engineering, East China Jiaotong University, Nanchang 330013, China.

出版信息

Sensors (Basel). 2025 Jul 3;25(13):4147. doi: 10.3390/s25134147.

Abstract

Fine-grained recognition tasks face significant challenges in differentiating subtle, class-specific details against cluttered backgrounds. This paper presents an efficient architecture built upon the Res2Net backbone, significantly enhanced by a dynamic Sparse Attention mechanism. The core approach leverages the inherent multi-scale representation power of Res2Net to capture discriminative patterns across different granularities. Crucially, the integrated Sparse Attention module operates dynamically, selectively amplifying the most informative features while attenuating irrelevant background noise and redundant details. This combined strategy substantially improves the model's ability to focus on pivotal regions critical for accurate classification. Furthermore, strategic architectural optimizations are applied throughout to minimize computational complexity, resulting in a model that demands significantly fewer parameters and exhibits faster inference times. Extensive evaluations on benchmark datasets demonstrate the effectiveness of the proposed method. It achieves a modest but consistent accuracy gain over strong baselines (approximately 2%) while simultaneously reducing model size by around 30% and inference latency by about 20%, proving highly effective for practical fine-grained recognition applications requiring both high accuracy and operational efficiency.

摘要

细粒度识别任务在区分杂乱背景下的细微、特定类别的细节方面面临重大挑战。本文提出了一种基于Res2Net骨干构建的高效架构,并通过动态稀疏注意力机制显著增强。核心方法利用Res2Net固有的多尺度表示能力来捕捉不同粒度上的判别模式。至关重要的是,集成的稀疏注意力模块动态运行,选择性地放大最具信息的特征,同时减弱无关的背景噪声和冗余细节。这种组合策略大大提高了模型聚焦于对准确分类至关重要的关键区域的能力。此外,在整个架构中应用了策略性优化以最小化计算复杂度,从而得到一个需要显著更少参数且推理时间更快的模型。在基准数据集上的广泛评估证明了所提方法的有效性。它在强大的基线之上实现了适度但一致的准确率提升(约2%),同时将模型大小减少了约30%,推理延迟减少了约20%,对于需要高精度和运行效率的实际细粒度识别应用非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ca8/12252481/7f8a8b47530c/sensors-25-04147-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验