Spedden Meaghan E, O'Neill George C, West Timothy O, Tierney Tim M, Mellor Stephanie, Alexander Nicholas A, Seymour Robert, Lundbye-Jensen Jesper, Nielsen Jens Bo, Farmer Simon F, Bestmann Sven, Barnes Gareth R
Department of Imaging Neuroscience, UCL Institute of Neurology, London WC1N 3AR, UK.
Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
Sensors (Basel). 2025 Jul 4;25(13):4160. doi: 10.3390/s25134160.
A central challenge in movement neuroscience is developing methods for non-invasive spatiotemporal imaging of brain activity during natural, whole-body movement. We test the utility of a new brain imaging modality, optically pumped magnetoencephalography (OP-MEG), as an instrument to study the spatiotemporal dynamics of human walking. Specifically, we ask whether known physiological signals can be recovered during discrete steps involving large-scale, whole-body translation. Our findings show that by using OP-MEG, we can image the brain during large-scale, natural movements. We provide proof-of-principle evidence for movement-related changes in beta band activity during stepping vs. standing, which are source-localized to the sensorimotor cortex. This work supports the significant potential of the OP-MEG modality for addressing fundamental questions in human gait research relevant to both the physiological and pathological mechanisms of walking.
运动神经科学面临的一个核心挑战是开发用于在自然的全身运动过程中对大脑活动进行无创时空成像的方法。我们测试了一种新的脑成像模态——光泵磁共振脑成像(OP-MEG)作为研究人类行走时空动态的工具的效用。具体而言,我们探究在涉及大规模全身平移的离散步幅过程中,已知的生理信号是否能够被恢复。我们的研究结果表明,通过使用OP-MEG,我们能够在大规模自然运动过程中对大脑进行成像。我们提供了原理验证证据,证明在行走与站立过程中β波段活动存在与运动相关的变化,这些变化的源头定位于感觉运动皮层。这项工作支持了OP-MEG模态在解决与行走的生理和病理机制相关的人类步态研究基本问题方面的巨大潜力。