Suppr超能文献

一种使用光泵磁力计的新型、强大且便携的脑磁图平台。

A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers.

作者信息

Schofield Holly, Hill Ryan M, Feys Odile, Holmes Niall, Osborne James, Doyle Cody, Bobela David, Corvilain Pierre, Wens Vincent, Rier Lukas, Bowtell Richard, Ferez Maxime, Mullinger Karen J, Coleman Sebastian, Rhodes Natalie, Rea Molly, Tanner Zoe, Boto Elena, de Tiège Xavier, Shah Vishal, Brookes Matthew J

机构信息

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom.

Cerca Magnetics Limited, Nottingham, United Kingdom.

出版信息

Imaging Neurosci (Camb). 2024 Sep 25;2:1-22. doi: 10.1162/imag_a_00283. eCollection 2024 Sep 1.

Abstract

Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of "OPM-MEG" systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG is in its infancy with existing limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range. We show that this system produces equivalent measures compared with an established OPM-MEG instrument; specifically, when measuring task-induced beta-band, gamma-band, and evoked neuro-electrical responses, source localisations from the two systems were comparable and temporal correlation of measured brain responses was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG and offers an attractive platform for next generation functional medical imaging.

摘要

脑磁图(MEG)通过评估神经电流产生的磁场来测量脑功能。传统的MEG使用超导传感器,这对性能、实用性和部署都有很大限制;然而,近年来光泵磁力计(OPM)的引入给该领域带来了变革。OPM能够在无需低温环境的情况下测量MEG信号,因此催生了“OPM-MEG”系统的概念,表面上该系统具有更高的灵敏度和分辨率、更长的使用寿命、受试者可自由移动以及成本更低等优点。然而,OPM-MEG尚处于起步阶段,在传感器和系统设计方面都存在现有局限性。在此,我们报告一种新型的OPM-MEG设计,其具有小型化和集成化的电子控制、高度的便携性以及改进的传感器动态范围。我们表明,该系统与已有的OPM-MEG仪器相比能产生等效的测量结果;具体而言,在测量任务诱发的β波段、γ波段以及诱发神经电反应时,两个系统的源定位具有可比性,且在个体水平上测量到的脑反应的时间相关性>0.7,在群体水平上>0.9。通过在高达8 nT的背景场中运行该系统,我们使用电磁体模证明了其动态范围得到了改善。我们表明该系统在自由移动(包括从坐姿到站姿的模式)过程中能够有效地收集数据,并且与同步脑电图(EEG)兼容。最后,我们通过在两个实验室之间移动该系统展示了其便携性。总体而言,我们的新系统被证明是OPM-MEG向前迈出的重要一步,并为下一代功能性医学成像提供了一个有吸引力的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0344/11533384/275b17479ef7/imag_a_00283_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验