Suppr超能文献

使用机器学习分析美国农村社区医疗保健的地理空间差异

Analysis of Geospatial Variations in Healthcare Across Rural Communities in the US Using Machine Learning.

作者信息

Svynarenko Radion, Kim Hyun, Stansberry Tracey, Oh Changwha, Sarkar Anujit, Lindley Lisa Catherine

机构信息

College of Nursing, University of Tennessee, 1412 Circle Dr., Knoxville, TN 37996, USA.

Department of Geography and Sustainability, University of Tennessee, 1000 Phillip Fulmer Way, Knoxville, TN 37996, USA.

出版信息

Healthcare (Basel). 2025 Jun 24;13(13):1504. doi: 10.3390/healthcare13131504.

Abstract

BACKGROUND/OBJECTIVES: Rural public health is significantly impacted by social drivers of health (SDOH), a set of community-level factors, with rural areas facing challenges such as a higher rate of aging population, fewer jobs, lower income, higher mortality, and poor healthcare access. While much research exists on rurality and SDOH, methodological issues remain, including a narrow definition of SDOH that often overlooks the critical location aspect of healthcare.

METHODS

This study utilized county-level data from the 2020 Agency of Healthcare Research and Quality SDOH database to investigate geospatial variations in healthcare across the spectrum of rurality. This study employed a set of novel spatial-statistical methods: gradient boosting machines (GBM), Shapley additive explanations (SHAP), and multiscale geographically weighted regression (MGWR).

RESULTS

The analysis of 262 variables across 1976 counties identified 20 key variables related to rural healthcare. These variables were grouped into three categories: health insurance status, access to care, and the volume of standardized Medicare payments. The MGWR model further revealed both global and local effects of specific healthcare characteristics on rurality, demonstrating that geographically varying relationships were strongly associated with socio-geographical factors.

CONCLUSIONS

To improve the SDOH in vulnerable rural communities, particularly in Southern states without Medicaid expansion, policymakers must develop and implement equitable and innovative care models to address social determinants of health and access-to-care issues, especially given the potential cuts to public health programs.

摘要

背景/目的:农村公共卫生受到健康的社会驱动因素(SDOH)的显著影响,这是一组社区层面的因素,农村地区面临着诸如人口老龄化率较高、就业机会少、收入低、死亡率高以及医疗保健可及性差等挑战。虽然关于农村地区和SDOH的研究很多,但方法学问题仍然存在,包括对SDOH的定义狭窄,往往忽视了医疗保健的关键地理位置方面。

方法

本研究利用了2020年医疗保健研究与质量局SDOH数据库中的县级数据,以调查农村地区范围内医疗保健的地理空间差异。本研究采用了一组新颖的空间统计方法:梯度提升机(GBM)、夏普利值附加解释(SHAP)和多尺度地理加权回归(MGWR)。

结果

对1976个县的262个变量进行分析后,确定了20个与农村医疗保健相关的关键变量。这些变量分为三类:医疗保险状况、医疗服务可及性和标准化医疗保险支付量。MGWR模型进一步揭示了特定医疗保健特征对农村地区的全局和局部影响,表明地理上不同的关系与社会地理因素密切相关。

结论

为了改善脆弱农村社区的SDOH,特别是在没有扩大医疗补助计划的南部各州,政策制定者必须制定并实施公平和创新的护理模式,以解决健康的社会决定因素和医疗服务可及性问题,尤其是考虑到公共卫生项目可能会削减的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6339/12248851/7c1da56100a0/healthcare-13-01504-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验