Ji Ying, Li Juan, Ma Li, Wang Zhijie, Du Bochu, Kwan Hiu Yee, Bian Zhaoxiang, Chu Chih-Chang
Research Institute for Intelligent Wearable Systems, Hong Kong Polytechnic University, Hong Kong SAR, China.
CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Nanomaterials (Basel). 2025 Jun 30;15(13):1006. doi: 10.3390/nano15131006.
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. This research developed functional polymers that are complexed with therapeutic molecules as a coating strategy for iron oxide nanoparticles. An arginine-based poly (ester urea urethane) polymer complexed with a macrophage-polarizing molecule (APU-R848) could provide a synergistic effect with iron oxide nanoparticles (IONPs) to stimulate the M1-polarization of macrophages at the tumor site, resulting in a versatile nano-platform for immune regulation of TNBC. In the 4T1 in vivo breast tumor model, the APU-R848-IONPs demonstrated an improved intratumoral biodistribution compared to IONPs without a polymer coating. APU-R848-IONPs significantly reversed the immune-suppressive tumor environment by reducing the M2/M1 macrophage phenotype ratio by 51%, associated with an elevated population of cytotoxic T cells and a significantly enhanced production of tumoricidal cytokines. The activated immune response induced by APU-R848-IONP resulted in a significant anti-tumor effect, demonstrating an efficacy that was more than 3.2-fold more efficient compared to the controls. These immune-regulatory pseudo-protein-coated iron oxide nanoparticles represent an effective nano-strategy for macrophages' regulation and the activation of anti-tumor immunity, providing a new treatment modality for triple-negative breast cancer.
三阴性乳腺癌(TNBC)常常逃避免疫识别与清除,从而形成免疫抑制性微环境。肿瘤相关巨噬细胞的吞噬活性突出了纳米材料作为一种有前景的策略的发展,该策略旨在靶向这些巨噬细胞并调节其极化,从而推进针对TNBC的免疫治疗。本研究开发了与治疗分子复合的功能性聚合物,作为氧化铁纳米颗粒的包被策略。一种与巨噬细胞极化分子复合的基于精氨酸的聚(酯脲聚氨酯)聚合物(APU-R848)可与氧化铁纳米颗粒(IONPs)产生协同效应,以刺激肿瘤部位巨噬细胞的M1极化,从而形成一个用于TNBC免疫调节的多功能纳米平台。在4T1体内乳腺肿瘤模型中,与没有聚合物包被的IONPs相比,APU-R848-IONPs显示出改善的肿瘤内生物分布。APU-R848-IONPs通过将M2/M1巨噬细胞表型比例降低51%,显著逆转了免疫抑制性肿瘤环境,这与细胞毒性T细胞群体增加以及杀肿瘤细胞因子的产生显著增强相关。APU-R848-IONP诱导的激活免疫反应导致了显著的抗肿瘤作用,其疗效比对照组高出3.2倍以上。这些免疫调节性假蛋白包被的氧化铁纳米颗粒代表了一种用于巨噬细胞调节和激活抗肿瘤免疫的有效纳米策略,为三阴性乳腺癌提供了一种新的治疗方式。
Cancer Immunol Immunother. 2025-6-30
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2017-12-22
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024
ACS Appl Mater Interfaces. 2024-5-22
Med Rev (2021). 2023-4-18
Cancers (Basel). 2022-7-21
J Exp Clin Cancer Res. 2022-2-19
Nanomedicine (Lond). 2021-12
J Control Release. 2022-1