Razumnaya Anna, Tikhonov Yuri, Naidenko Dmitrii, Linnik Ekaterina, Lukyanchuk Igor
Condensed Matter Physics Department, Jozef Stefan Institute, 1000 Ljubljana, Slovenia.
Laboratory of Condensed Matter Physics, University of Picardie, 80039 Amiens, France.
Nanomaterials (Basel). 2025 Jul 6;15(13):1049. doi: 10.3390/nano15131049.
Ferroelectric materials, characterized by spontaneous electric polarization, exhibit remarkable parallels with fluid dynamics, where polarization flux behaves similarly to fluid flow. Understanding polarization distribution in confined geometries at the nanoscale is crucial for both fundamental physics and technological applications. Here, we show that the classical Bernoulli principle, which describes the conservation of the energy flux along velocity streamlines in a moving fluid, can be extended to the conservation of polarization flux in ferroelectric nanorods with varying cross-sectional areas. Geometric constrictions lead to an increase in polarization, resembling fluid acceleration in a narrowing pipe, while expansions cause a decrease. Beyond a critical expansion, phase separation occurs, giving rise to topological polarization structures such as polarization bubbles, curls and Hopfions. This effect extends to soft ferroelectrics, including ferroelectric nematic liquid crystals, where polarization flux conservation governs the formation of complex mesoscale states.
铁电材料以自发极化特性为特征,与流体动力学有着显著的相似之处,其中极化通量的行为类似于流体流动。理解纳米尺度受限几何结构中的极化分布对于基础物理学和技术应用都至关重要。在此,我们表明,描述运动流体中沿速度流线能量通量守恒的经典伯努利原理,可以扩展到具有不同横截面积的铁电纳米棒中的极化通量守恒。几何收缩导致极化增加,类似于狭窄管道中的流体加速,而扩张则导致极化减小。超过临界扩张时,会发生相分离,产生诸如极化泡、卷曲和霍普夫孤子等拓扑极化结构。这种效应扩展到软铁电体,包括铁电向列液晶,其中极化通量守恒控制着复杂中尺度状态的形成。