Suppr超能文献

观察氧化物超晶格中的极地涡旋。

Observation of polar vortices in oxide superlattices.

机构信息

Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

出版信息

Nature. 2016 Feb 11;530(7589):198-201. doi: 10.1038/nature16463. Epub 2016 Jan 27.

Abstract

The complex interplay of spin, charge, orbital and lattice degrees of freedom provides a plethora of exotic phases and physical phenomena. In recent years, complex spin topologies have emerged as a consequence of the electronic band structure and the interplay between spin and spin-orbit coupling in materials. Here we produce complex topologies of electrical polarization--namely, nanometre-scale vortex-antivortex (that is, clockwise-anticlockwise) arrays that are reminiscent of rotational spin topologies--by making use of the competition between charge, orbital and lattice degrees of freedom in superlattices of alternating lead titanate and strontium titanate layers. Atomic-scale mapping of the polar atomic displacements by scanning transmission electron microscopy reveals the presence of long-range ordered vortex-antivortex arrays that exhibit nearly continuous polarization rotation. Phase-field modelling confirms that the vortex array is the low-energy state for a range of superlattice periods. Within this range, the large gradient energy from the vortex structure is counterbalanced by the corresponding large reduction in overall electrostatic energy (which would otherwise arise from polar discontinuities at the lead titanate/strontium titanate interfaces) and the elastic energy associated with epitaxial constraints and domain formation. These observations have implications for the creation of new states of matter (such as dipolar skyrmions, hedgehog states) and associated phenomena in ferroic materials, such as electrically controllable chirality.

摘要

自旋、电荷、轨道和晶格自由度的复杂相互作用提供了丰富的奇异相和物理现象。近年来,由于材料中的电子能带结构和自旋与自旋轨道耦合的相互作用,复杂的自旋拓扑结构已经出现。在这里,我们通过利用铅钛酸盐和钛酸锶层交替超晶格中电荷、轨道和晶格自由度之间的竞争,产生了电极化的复杂拓扑结构——即纳米级涡旋-反涡旋(即顺时针-逆时针)阵列,这让人联想到旋转的自旋拓扑结构。原子尺度的极化原子位移扫描透射电子显微镜映射揭示了长程有序的涡旋-反涡旋阵列的存在,该阵列表现出近乎连续的极化旋转。相场模拟证实,涡旋阵列是一系列超晶格周期的低能态。在这个范围内,涡旋结构的大梯度能量被超晶格界面处的极化不连续性(否则会产生)以及与外延约束和畴形成相关的弹性能量的相应大幅度降低所平衡。这些观察结果对铁电材料中物质的新状态(如偶极斯格明子、刺猬态)和相关现象(如电可控手性)的产生具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验