Suppr超能文献

基于路面响应的沥青混合料动态模量新设计方法

A New Design Methodology of Asphalt Mixture Dynamic Modulus Based on Pavement Response.

作者信息

Huang You, Feng Boxiong, Yang Xin, Cheng Minxiang, Liu Zhaohui

机构信息

Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education, Changsha University of Science and Technology, Changsha 400114, China.

School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 400114, China.

出版信息

Materials (Basel). 2025 Jul 5;18(13):3184. doi: 10.3390/ma18133184.

Abstract

The design of asphalt mixture has, for a long time, been an empirical and proof process, causing the mismatch between material design and pavement structure design. To enhance the rationality of asphalt pavement design, this study seeks a path to bridge the gap between asphalt mixture modulus and structural behavior. Firstly, pavement models with different base rigidities, including cement concrete base, cement-treated granular base, and granular base, were constructed to calculate the pavement responses under different dynamic modulus master curve parameters. The influence of master curve parameters on critical pavement responses was identified by the response surface method (RSM). Furthermore, a Whale Optimization Algorithm-Back Propagation (WOA-BP) artificial-neural-network-based pavement response prediction model was established. Then, a database mapping over 100 thousand pavement responses and dynamic modulus master curve parameters was built for determining the dynamic modulus master curve parameters by optimizing the pavement responses. The results show that the impacts of dynamic modulus master curve parameters on critical pavement responses depend on pavement structures. In general, parameter has the greatest impact, followed by , while the effects of and are relatively small. The Artificial Neural Network (ANN) performance prediction model, optimized by the WOA algorithm, has a high accuracy. The methodology for determining the dynamic modulus master curve parameter based on the critical response of pavement was successfully implemented. The findings can bridge the gap between material design and structure design of asphalt pavement and provide a basis for more accurate and reasonable asphalt pavement design.

摘要

长期以来,沥青混合料的设计一直是一个经验性和验证性的过程,导致材料设计与路面结构设计不匹配。为提高沥青路面设计的合理性,本研究寻求弥合沥青混合料模量与结构性能之间差距的途径。首先,构建了具有不同基层刚度的路面模型,包括水泥混凝土基层、水泥稳定粒料基层和粒料基层,以计算不同动态模量主曲线参数下的路面响应。通过响应面法(RSM)确定主曲线参数对关键路面响应的影响。此外,建立了基于鲸鱼优化算法-反向传播(WOA-BP)人工神经网络的路面响应预测模型。然后,建立了一个包含超过10万个路面响应和动态模量主曲线参数的数据库,通过优化路面响应来确定动态模量主曲线参数。结果表明,动态模量主曲线参数对关键路面响应的影响取决于路面结构。一般来说,参数 影响最大,其次是 ,而 和 的影响相对较小。经WOA算法优化的人工神经网络(ANN)性能预测模型具有较高的精度。基于路面关键响应确定动态模量主曲线参数的方法得以成功实现。研究结果可弥合沥青路面材料设计与结构设计之间的差距,为更准确合理的沥青路面设计提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d9/12250730/925882232555/materials-18-03184-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验