Niazi Sarfaraz K
College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.
Int J Mol Sci. 2025 Jun 30;26(13):6325. doi: 10.3390/ijms26136325.
Quantum mechanics (QM) revolutionizes drug discovery by providing precise molecular insights unattainable with classical methods. This review explores QM's role in computational drug design, detailing key methods like density functional theory (DFT), Hartree-Fock (HF), quantum mechanics/molecular mechanics (QM/MM), and fragment molecular orbital (FMO). These methods model electronic structures, binding affinities, and reaction mechanisms, enhancing structure-based and fragment-based drug design. This article highlights the applicability of QM to various drug classes, including small-molecule kinase inhibitors, metalloenzyme inhibitors, covalent inhibitors, and fragment-based leads. Quantum computing's potential to accelerate quantum mechanical (QM) calculations is discussed alongside novel applications in biological drugs (e.g., gene therapies, monoclonal antibodies, biosimilars), protein-receptor dynamics, and new therapeutic indications. A molecular dynamics (MD) simulation exercise is included to teach QM/MM applications. Future projections for 2030-2035 emphasize QM's transformative impact on personalized medicine and undruggable targets. The qualifications and tools required for researchers, including advanced degrees, programming skills, and software such as Gaussian and Qiskit, are outlined, along with sources for training and resources. Specific publications on quantum mechanics (QM) in drug discovery relevant to QM and molecular dynamics (MD) studies are incorporated. Challenges, such as computational cost and expertise requirements, are addressed, offering a roadmap for educators and researchers to leverage quantum mechanics (QM) and molecular dynamics (MD) in drug discovery.
量子力学(QM)通过提供经典方法无法获得的精确分子见解,彻底改变了药物发现。本综述探讨了量子力学在计算药物设计中的作用,详细介绍了密度泛函理论(DFT)、哈特里-福克(HF)、量子力学/分子力学(QM/MM)和片段分子轨道(FMO)等关键方法。这些方法对电子结构、结合亲和力和反应机制进行建模,增强了基于结构和基于片段的药物设计。本文强调了量子力学在各种药物类别中的适用性,包括小分子激酶抑制剂、金属酶抑制剂、共价抑制剂和基于片段的先导化合物。讨论了量子计算加速量子力学(QM)计算的潜力,以及在生物药物(如基因疗法、单克隆抗体、生物类似药)、蛋白质-受体动力学和新治疗适应症方面的新应用。包含了一个分子动力学(MD)模拟练习,以教授QM/MM的应用。对2030 - 2035年的未来预测强调了量子力学对个性化医疗和难以成药靶点的变革性影响。概述了研究人员所需的资质和工具,包括高级学位、编程技能以及高斯和Qiskit等软件,还介绍了培训来源和资源。纳入了与量子力学(QM)和分子动力学(MD)研究相关的药物发现中量子力学(QM)的具体出版物。解决了计算成本和专业知识要求等挑战,为教育工作者和研究人员在药物发现中利用量子力学(QM)和分子动力学(MD)提供了路线图。