Suppr超能文献

使用机器学习预测孕妇自发性早产。

Prediction of spontaneous preterm birth in pregnant women using machine learning.

作者信息

Yang Xiaoxue, Song Xuewu, Yang Kun, Gao Peng, Wang Shuai, Zhang Simin, Qiang Rong, Li Zhibin, Gao Xinru

机构信息

Ultrasonic Diagnosis Center, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Rd, Xi'an, 710061, Shaanxi, China.

Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

出版信息

Arch Gynecol Obstet. 2025 Jul 12. doi: 10.1007/s00404-025-08117-0.

Abstract

PURPOSE

Spontaneous preterm birth (sPTB) is a significant global health concern, contributing to adverse outcomes for both pregnant women and newborns. Early identification of women with risk of sPTB is essential for mitigating these negative effects and improving maternal and neonatal health outcomes. The aim of this study is to explore the feasibility of using machine learning to predict sPTB risk and to analyze the contribution of variables.

METHODS

All data were collected retrospectively. Prediction models were developed using eight different machine learning algorithms combined with six variable selection methods. The models' predictive performance was evaluated using area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), accuracy, sensitivity, F1-score, positive predictive value, and negative predictive value.

RESULTS

A total of 1122 pregnant women, of whom 187 had preterm birth and 935 had term birth, were enrolled. The model by combining the categorical boosting algorithm and backward elimination had the best predictive performance with the highest AUROC (0.8762) and AUPRC (0.7061), and the Brier score was 0.12 on the test set. The top 5 variables for predicting sPTB risk in this study were free triiodothyronine, albumin/globulin, thyroglobulin antibody, total thyroxine, red cell volume distribution width.

CONCLUSIONS

The machine learning model may help identify pregnant women at high risk of sPTB, and individual risk factor analysis could provide reference for clinical decision. However, as some key variables are not part of routine laboratory tests during pregnancy worldwide, the model's generalizability and clinical applicability require further study.

摘要

目的

自发性早产(sPTB)是一个重大的全球健康问题,对孕妇和新生儿都会造成不良后果。早期识别有sPTB风险的女性对于减轻这些负面影响和改善母婴健康结局至关重要。本研究的目的是探讨使用机器学习预测sPTB风险的可行性,并分析变量的贡献。

方法

所有数据均为回顾性收集。使用八种不同的机器学习算法结合六种变量选择方法开发预测模型。使用受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)、准确率、灵敏度、F1分数、阳性预测值和阴性预测值评估模型的预测性能。

结果

共纳入1122名孕妇,其中187名早产,935名足月产。结合分类提升算法和向后消除法的模型具有最佳预测性能,AUROC最高(0.8762),AUPRC最高(0.7061),测试集上的Brier评分为0.12。本研究中预测sPTB风险的前5个变量是游离三碘甲状腺原氨酸、白蛋白/球蛋白、甲状腺球蛋白抗体、总甲状腺素、红细胞体积分布宽度。

结论

机器学习模型可能有助于识别有sPTB高风险的孕妇,个体风险因素分析可为临床决策提供参考。然而,由于一些关键变量并非全球孕期常规实验室检查的一部分,该模型的通用性和临床适用性需要进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验