Lee Hsiang Ying, Tung Yu-Hung, Elises Jose Carlo, Wang Yen-Chun, Gauhar Vineet, Cho Sung Yong
Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
World J Urol. 2025 Jul 12;43(1):433. doi: 10.1007/s00345-025-05762-7.
Lower pole renal stones (LPS) present unique challenges for retrograde intrarenal surgery (RIRS) due to unfavorable anatomical features, often resulting in suboptimal stone-free rates (SFR). Recent advancements in machine learning (ML) offer new opportunities to predict surgical outcomes and guide clinical decision-making. This study aimed to develop and validate ML-based models to predict SFR following RIRS for LPS.
We retrospectively analyzed data from 327 patients with LPS who underwent RIRS at two academic institutions: Kaohsiung Medical University Hospital (KMUH, n = 193) and Seoul National University Hospital (SNUH, n = 134). Demographic, anatomical, and stone-related variables were collected, including stone burden, Hounsfield unit (HU), pelvic stone angle (PSA), and renal infundibular length (RIL). A Light Gradient Boosting Machine (LightGBM) algorithm was developed using KMUH data and externally validated with SNUH data. SHAP (SHapley Additive exPlanations) analysis was performed to interpret feature importance.
The LightGBM model achieved the highest predictive performance. External validation using the SNUH dataset yielded an accuracy of 77.1%, AUC of 0.759, and F1-score of 0.853. SHAP analysis revealed that stone burden, HU, PSA, and RIL were the most influential features. Notably, PSA demonstrated strong predictive relevance, supporting its use as an alternative to the traditional infundibulopelvic angle (IPA) in anatomical assessment.
ML-based models, particularly LightGBM, offer robust predictive capability for SFR following RIRS in patients with LPS. These tools may enhance preoperative planning and personalized surgical strategies. Future prospective studies are warranted to further validate their clinical utility and expand on feature integration.
由于解剖结构不利,下极肾结石(LPS)给逆行性肾内手术(RIRS)带来了独特的挑战,常常导致结石清除率(SFR)不理想。机器学习(ML)的最新进展为预测手术结果和指导临床决策提供了新的机会。本研究旨在开发并验证基于ML的模型,以预测LPS患者RIRS后的SFR。
我们回顾性分析了在两家学术机构接受RIRS的327例LPS患者的数据:高雄医学大学附属医院(KMUH,n = 193)和首尔国立大学医院(SNUH,n = 134)。收集了人口统计学、解剖学和结石相关变量,包括结石负荷、亨氏单位(HU)、肾盂结石角(PSA)和肾漏斗长度(RIL)。使用KMUH数据开发了轻梯度提升机(LightGBM)算法,并使用SNUH数据进行外部验证。进行SHAP(SHapley加性解释)分析以解释特征重要性。
LightGBM模型具有最高的预测性能。使用SNUH数据集进行的外部验证得出的准确率为77.1%,曲线下面积(AUC)为0.759,F1分数为0.853。SHAP分析表明,结石负荷、HU、PSA和RIL是最具影响力的特征。值得注意的是,PSA显示出很强的预测相关性,支持其在解剖评估中作为传统肾盂漏斗角(IPA)的替代指标。
基于ML的模型,尤其是LightGBM,对LPS患者RIRS后的SFR具有强大的预测能力。这些工具可能会加强术前规划和个性化手术策略。未来有必要进行前瞻性研究,以进一步验证其临床效用并扩展特征整合。