Pei Lijia, Wang Yuanhang, Ye Mengran, Sun Wenhao, Zhang Junfeng, Gao Pengcheng, Tao Zhi, Liu Dameng, Jing Juehua, Guan Jianzhong
The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230032, China.
The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui 233044, China.
ACS Appl Mater Interfaces. 2025 Jul 23;17(29):41729-41746. doi: 10.1021/acsami.5c07676. Epub 2025 Jul 12.
Articular cartilage exhibits inherently poor self-repair capacity, and conventional therapeutic strategies often yield suboptimal long-term functional restoration due to inadequate tissue remodeling and mechanical instability. To address this challenge, we developed a biomimetic hydrogel scaffold integrating bone marrow mesenchymal stem cell (BMSC)-derived exosomes within a cartilage-mimetic matrix composed of gelatin methacrylate (GelMA), chondroitin sulfate methacrylate (CSMA), and hyaluronic acid methacrylate (HAMA). In vitro analyses demonstrated the composite hydrogel's robust capacity to drive chondrogenic differentiation of BMSCs, as evidenced by upregulated expression of collagen II and aggrecan. Crucially, exosome incorporation enhanced cellular internalization efficiency and induced chemotactic migration of BMSCs toward exosome-enriched hydrogel regions, creating a self-reinforcing regenerative niche. The sustained release profile of exosomes from the hydrogel matrix preserved their bioactivity and synergistically amplified chondroinductive signaling. In a rat osteochondral defect model, the GelMA/CSMA/HAMA@Exo scaffold significantly accelerated hyaline-like cartilage regeneration with improved structural integration and biomechanical properties compared to exosome-free controls. This engineered platform exemplifies a spatiotemporally coordinated strategy for recapitulating native cartilage repair cascades, offering a promising therapeutic paradigm for functional cartilage restoration.
关节软骨本身自我修复能力较差,传统治疗策略往往因组织重塑不足和机械稳定性欠佳而导致长期功能恢复不理想。为应对这一挑战,我们开发了一种仿生水凝胶支架,将骨髓间充质干细胞(BMSC)来源的外泌体整合到由甲基丙烯酸明胶(GelMA)、甲基丙烯酸硫酸软骨素(CSMA)和甲基丙烯酸透明质酸(HAMA)组成的类软骨基质中。体外分析表明,复合水凝胶具有强大的驱动BMSCs成软骨分化的能力,Ⅱ型胶原蛋白和聚集蛋白聚糖的表达上调证明了这一点。至关重要的是,外泌体的掺入提高了细胞内化效率,并诱导BMSCs向富含外泌体的水凝胶区域进行趋化迁移,从而形成一个自我强化的再生微环境。水凝胶基质中外泌体的缓释特性保留了它们的生物活性,并协同放大了软骨诱导信号。在大鼠骨软骨缺损模型中,与不含外泌体的对照组相比,GelMA/CSMA/HAMA@Exo支架显著加速了透明样软骨再生,改善了结构整合和生物力学性能。这个工程平台体现了一种时空协调的策略,用于重现天然软骨修复级联反应,为功能性软骨修复提供了一种有前景的治疗模式。