Suppr超能文献

法医病理学中的人工智能:用于估计死后间隔时间的多器官死后病理组学

Artificial intelligence in forensic pathology: Multi-organ postmortem pathomics for estimating postmortem interval.

作者信息

An Guoshuai, Gao Yu, Cheng Siyuan, Li Na, Ren Kang, Du Qiuxiang, Bai Rufeng, Sun Junhong

机构信息

School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi 030600, China.

Key Laboratory of Evidence Science, China University of Political Science and Law, Haidian District, Beijing 100088, China.

出版信息

Comput Methods Programs Biomed. 2025 Oct;270:108949. doi: 10.1016/j.cmpb.2025.108949. Epub 2025 Jul 7.

Abstract

BACKGROUND

Accurate estimation of the postmortem interval is crucial in forensic investigations. Pathomics presents a promising advancement by leveraging whole-slide images as a novel data modality for the diagnosis and prognosis of diseases in clinical situations. The extended application of this technology in forensic postmortem image analysis is expected to give rise to postmortem pathomics as an important subfield.

OBJECTIVE

This study aimed to develop a three-level hierarchical strategy using pathomics to analyze postmortem histological images data, develop multi-organ integrated model for the postmortem interval estimation, and lay the foundation for postmortem pathomics.

METHODS

Twelve Bama miniature pigs were euthanized, and liver, kidney, and skeletal muscle tissues were collected at 6, 24, 48, and 96 h postmortem. Hematoxylin and eosin stained whole slide images were divided into 512 × 512 pixel patches. Low-quality patches were excluded using Otsu thresholding, and color normalization was applied using the Vahadane algorithm to minimize staining variability. Deep learning models were trained on patch-level data using transfer learning and evaluated for interpretability with Grad-CAM. Slide-level predictions were obtained via organ-specific deep feature aggregation and machine learning models, while a multi-organ integrated model was developed using a stacking ensemble combining above machine learning models and a logistic regression. Four additional pigs were introduced for external validation at the multi-organ integrated individual-level.

RESULTS

DenseNet121 demonstrated superior performance for liver and kidney, while VGG16 performed best for skeletal muscle tissue. These models were designated as postmortem-liver-net, postmortem-kidney-net, and postmortem-muscle-net, respectively, and employed to extract pathomics features from images. Slide-level models trained on these features vectors achieved accuracies of 81.25% (liver), 87.5% (kidney), and 62.5% (muscle). A stacking model integrating probability output of these three slide-level models achieved internal and external test accuracies at multi-organ integrated individual-level of 93.75% and 87.5%, respectively.

CONCLUSION

This study demonstrated the potential of pathomics and deep learning for postmortem interval estimation. The proposed three-level framework effectively integrated multi-organ features, introducing whole-slide images as a novel modality and offering an innovative strategy for postmortem interval estimation.

摘要

背景

在法医调查中,准确估计死后间隔时间至关重要。病理组学通过利用全切片图像作为一种新的数据模式,在临床疾病的诊断和预后方面展现出了有前景的进展。预计该技术在法医死后图像分析中的扩展应用将催生死后病理组学这一重要子领域。

目的

本研究旨在开发一种三级分层策略,利用病理组学分析死后组织学图像数据,建立用于死后间隔时间估计的多器官综合模型,并为死后病理组学奠定基础。

方法

对12只巴马小型猪实施安乐死,并在死后6、24、48和96小时收集肝脏、肾脏和骨骼肌组织。苏木精和伊红染色的全切片图像被分割成512×512像素的图像块。使用大津阈值法排除低质量图像块,并使用瓦哈达内算法进行颜色归一化,以最小化染色变异性。利用迁移学习在图像块级数据上训练深度学习模型,并使用Grad-CAM评估其可解释性。通过器官特异性深度特征聚合和机器学习模型获得切片级预测结果,同时使用上述机器学习模型与逻辑回归相结合的堆叠集成方法开发多器官综合模型。另外引入4只猪用于多器官综合个体水平的外部验证。

结果

DenseNet121在肝脏和肾脏方面表现出卓越性能,而VGG16在骨骼肌组织方面表现最佳。这些模型分别被命名为死后肝脏网络、死后肾脏网络和死后肌肉网络,并用于从图像中提取病理组学特征。基于这些特征向量训练的切片级模型在肝脏、肾脏和肌肉上的准确率分别达到81.25%、87.5%和62.5%。整合这三个切片级模型概率输出的堆叠模型在多器官综合个体水平上的内部和外部测试准确率分别达到93.75%和87.5%。

结论

本研究证明了病理组学和深度学习在死后间隔时间估计方面的潜力。所提出的三级框架有效地整合了多器官特征,引入全切片图像作为一种新的模式,并为死后间隔时间估计提供了一种创新策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验