Suppr超能文献

生物信息学指导下的天然产物环肽合成。

Bioinformatics guided synthesis of natural product cyclic peptides.

作者信息

Coy Gabriela, Brajkovich Elliot N, Parkinson Elizabeth I

机构信息

Borch Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, United States.

James Tarpo Jr. and Margaret Tarpo Department of Chemistry, West Lafayette, IN, United States.

出版信息

Methods Enzymol. 2025;717:387-412. doi: 10.1016/bs.mie.2025.03.003. Epub 2025 Apr 2.

Abstract

Natural products are a fantastic source of bioactive molecules but are generally challenging to discover due to the rediscovery of known molecules and silent (i.e. transcriptionally inactive) biosynthetic gene clusters. A recently developed method to overcome this issue is the synthetic-bioinformatic natural product (syn-BNP) approach. In this approach, bioinformatics programs are used to predict natural product structures from cryptic biosynthetic gene clusters followed by chemical synthesis to access these otherwise challenging to acquire molecules. This enables access to natural products, or closely structurally related derivatives, from silent biosynthetic gene clusters or strains that are currently not culturable for biological activation. While this approach has been employed by a handful of laboratories, the bioinformatics pipeline can be challenging to scale due to the need to interface with multiple programs. Presented here is the development of a bioinformatics pipeline B-LinESS (Biosynthesis Linker: from Enzymes to Structures and Synthons), which enables more scalable identification of predicted structures and synthons for natural products based on the shared presence of certain genes of interest. Additionally, we describe methods to chemically synthesize the predicted cyclic peptide natural products. The chemical synthesis allows scalable access to molecules that can then be tested in a variety of bioactivity assays.

摘要

天然产物是生物活性分子的绝佳来源,但由于已知分子的重新发现以及沉默(即转录无活性)的生物合成基因簇,通常难以发现。一种最近开发的克服这一问题的方法是合成生物信息学天然产物(syn-BNP)方法。在这种方法中,生物信息学程序用于从隐秘的生物合成基因簇预测天然产物结构,然后通过化学合成来获取这些原本难以获得的分子。这使得能够从沉默的生物合成基因簇或目前无法培养以进行生物激活的菌株中获取天然产物或结构密切相关的衍生物。虽然少数实验室采用了这种方法,但由于需要与多个程序交互,生物信息学流程可能难以扩展。本文介绍了一种生物信息学流程B-LinESS(生物合成链接器:从酶到结构和合成子)的开发,它能够基于某些感兴趣基因的共同存在,更可扩展地识别天然产物的预测结构和合成子。此外,我们描述了化学合成预测的环肽天然产物的方法。化学合成允许可扩展地获取分子,然后可以在各种生物活性测定中进行测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验