Smith Andrew, Milosavljevic Snezana, Wright Courtney J, Grant Charlie A, Pocivavsek Ana, Valafar Homayoun
Computer Science and Engineering, University of South Carolina, Columbia, SC USA.
Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC USA.
NPP Digit Psychiatry Neurosci. 2025;3(1):20. doi: 10.1038/s44277-025-00035-y. Epub 2025 Jul 10.
Poor quality and poor duration of sleep have been associated with cognitive decline, diseases, and disorders. Therefore, sleep studies are imperative to recapitulate phenotypes associated with poor sleep quality and uncover mechanisms contributing to psychopathology. Classification of sleep stages, vigilance state bout durations, and number of transitions amongst vigilance states serves as a proxy for evaluating sleep quality in preclinical studies. Currently, the gold standard for sleep staging is expert human inspection of polysomnography (PSG) obtained from preclinical rodent models and this approach is immensely time consuming. To accelerate the analysis, we developed a deep-learning-based software tool for automated sleep stage classification in rats. This study aimed to develop an automated method for classifying three sleep stages in rats (REM/paradoxical sleep, NREM/slow-wave sleep, and wakefulness) using a deep learning approach based on single-channel EEG data. Single-channel EEG data were acquired from 16 rats, each undergoing two 24 h recording sessions. The data were labeled by human experts in 10 s epochs corresponding to three stages: REM/paradoxical sleep, NREM/slow-wave sleep, and wakefulness. A deep neural network (DNN) model was designed and trained to classify these stages using the raw temporal data from the EEG. The DNN achieved strong performance in predicting the three sleep stages, with an average F1 score of 87.6% over a cross-validated test set. The algorithm was able to predict key parameters of sleep architecture, including total bout duration, average bout duration, and number of bouts, with significant accuracy. Our deep learning model effectively automates the classification of sleep stages using single-channel EEG data in rats, reducing the need for labor-intensive manual annotation. This tool enables high-throughput sleep studies and may accelerate research into sleep-related pathologies. Furthermore, we provide over 700 h of expert-scored sleep data, available for public use in future research studies.
睡眠质量差和睡眠时间短与认知能力下降、疾病及功能紊乱有关。因此,睡眠研究对于重现与睡眠质量差相关的表型以及揭示导致精神病理学的机制至关重要。在临床前研究中,睡眠阶段的分类、警觉状态的发作持续时间以及警觉状态之间的转换次数可作为评估睡眠质量的指标。目前,睡眠分期的金标准是由专家人工检查从临床前啮齿动物模型获得的多导睡眠图(PSG),而这种方法非常耗时。为了加快分析速度,我们开发了一种基于深度学习的软件工具,用于对大鼠的睡眠阶段进行自动分类。本研究旨在开发一种基于深度学习方法的自动分类方法,利用单通道脑电图(EEG)数据对大鼠的三个睡眠阶段(快速眼动/异相睡眠、非快速眼动/慢波睡眠和清醒)进行分类。从16只大鼠获取单通道EEG数据,每只大鼠进行两次24小时的记录。数据由人类专家以10秒的时间段进行标记,对应三个阶段:快速眼动/异相睡眠、非快速眼动/慢波睡眠和清醒。设计并训练了一个深度神经网络(DNN)模型,使用EEG的原始时间数据对这些阶段进行分类。DNN在预测三个睡眠阶段方面表现出色,在交叉验证测试集上的平均F1分数为87.6%。该算法能够以显著的准确性预测睡眠结构的关键参数,包括总发作持续时间、平均发作持续时间和发作次数。我们的深度学习模型有效地利用大鼠的单通道EEG数据实现了睡眠阶段分类的自动化,减少了对劳动密集型手动注释的需求。该工具能够实现高通量睡眠研究,并可能加速对与睡眠相关病理的研究。此外,我们提供了超过700小时的专家评分睡眠数据,可供未来研究公开使用。