Beijing Institute of Technology, Beijing, People's Republic of China.
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
Physiol Meas. 2022 Aug 3;43(8). doi: 10.1088/1361-6579/ac7b67.
Sleep perturbation by environment, medical procedure and genetic background is under continuous study in biomedical research. Analyzing brain states in animal models such as rodents relies on categorizing electroencephalogram (EEG) recordings. Traditionally, sleep experts have classified these states by visual inspection of EEG signatures, which is laborious. The heterogeneity of sleep patterns complicates the development of a generalizable solution across different species, genotypes and experimental environments.To realize a generalizable solution, we proposed a cross-species rodent sleep scoring network called CSSleep, a robust deep-learning model based on single-channel EEG. CSSleep starts with a local time-invariant information learning convolutional neural network. The second module is the global transition rules learning temporal convolutional network (TRTCN), stacked with bidirectional attention-based temporal convolutional network modules. The TRTCN simultaneously captures positive and negative time direction information and highlights relevant in-sequence features. The dataset for model evaluation comprises the single-EEG signatures of four cohorts of 16 mice and 8 rats from three laboratories.In leave-one-cohort-out cross-validation, our model achieved an accuracy of 91.33%. CSSleep performed well on generalization across experimental environments, mutants and rodent species by using single-channel EEG.This study aims to promote well-standardized cross-laboratory sleep studies to improve our understanding of sleep. Our source codes and supplementary materials will be disclosed later.
环境、医学程序和遗传背景引起的睡眠紊乱是生物医学研究中持续不断的研究课题。在啮齿类动物等动物模型中分析脑状态依赖于对脑电图 (EEG) 记录进行分类。传统上,睡眠专家通过 EEG 特征的视觉检查对这些状态进行分类,这是一项繁琐的工作。睡眠模式的异质性使得在不同物种、基因型和实验环境中开发通用解决方案变得复杂。为了实现通用解决方案,我们提出了一种跨物种啮齿动物睡眠评分网络 CSSleep,这是一种基于单通道 EEG 的强大深度学习模型。CSSleep 从局部时不变信息学习卷积神经网络开始。第二个模块是全局转移规则学习时间卷积网络 (TRTCN),它由双向基于注意力的时间卷积网络模块堆叠而成。TRTCN 同时捕获正向和负向时间方向的信息,并突出相关的序列特征。用于模型评估的数据集包括来自三个实验室的四个 16 只小鼠和 8 只大鼠队列的单 EEG 特征。在留一队列交叉验证中,我们的模型达到了 91.33%的准确率。通过使用单通道 EEG,CSSleep 在跨实验环境、突变体和啮齿动物物种的泛化方面表现良好。本研究旨在促进标准化的跨实验室睡眠研究,以提高我们对睡眠的理解。我们的源代码和补充材料将在稍后公布。