基于超声的妇科肿瘤诊断中的人工智能:一项系统综述。
Artificial Intelligence in Ultrasound-Based Diagnoses of Gynecological Tumors: A Systematic Review.
作者信息
Abdalla Mohammed Fatima Siddig, Ahmed Eisa Sara Mirghani, Abdalla Madani Alsafa Mohamed, Alrowili Najah Madyan F, Al Ghaythan Ahlam Mohammed K, Mohamed Ali Ibtihal Meargani, Elamin Lamis, Abdirahman Salad Naima
机构信息
Obstetrics and Gynecology, Najran Armed Forces Hospital, Ministry of Defense Health Services, Najran, SAU.
Obstetrics and Gynecology, University of Juba, Khartoum, SDN.
出版信息
Cureus. 2025 Jun 12;17(6):e85884. doi: 10.7759/cureus.85884. eCollection 2025 Jun.
Gynecological tumors, particularly ovarian, endometrial, and uterine masses, pose significant diagnostic challenges due to their heterogeneity and the subjective nature of ultrasound interpretation. Artificial intelligence (AI) has emerged as a promising tool to enhance diagnostic accuracy, yet its clinical adoption remains limited. This systematic review synthesizes evidence on AI applications in ultrasound-based diagnosis of gynecological tumors, evaluating performance metrics, methodological strengths, and limitations to guide future research and clinical implementation. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, a comprehensive search was conducted across PubMed, Excerpta Medica Database (Embase), Institute of Electrical and Electronics Engineers Xplore (IEEE Xplore), Scopus, and Web of Science, yielding 252 records. After removing duplicates and screening titles/abstracts, 106 studies were assessed, with 26 meeting inclusion criteria. Eligible studies investigated AI models for gynecological tumor diagnosis using ultrasound. Data were extracted on study design, sample size, AI methodology, performance metrics, and clinical applicability. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Narrative synthesis was performed due to methodological heterogeneity. The 26 included studies demonstrated strong diagnostic performance, with AI models achieving accuracies of 75-99.8% and area under the curve (AUCs) up to 0.99 in differentiating benign from malignant tumors. Deep learning architectures (e.g., convolutional neural networks (CNNs), residual neural networks (ResNet)) outperformed traditional machine learning in most studies, particularly when integrating radiomics with clinical variables (e.g., cancer antigen 125 (CA-125)). However, heterogeneity in imaging protocols, sample sizes, and validation methods limited comparability. Only three studies employed prospective designs, and few addressed algorithmic bias or real-world clinical integration. AI shows significant potential to improve ultrasound-based diagnosis of gynecological tumors, offering superior accuracy and reproducibility compared to conventional methods. However, standardized imaging protocols, robust external validation, and prospective trials are needed to translate these tools into clinical practice. Future work should prioritize explainable AI, diverse datasets, and outcome studies to ensure equitable and effective implementation.
妇科肿瘤,尤其是卵巢、子宫内膜和子宫肿块,由于其异质性以及超声解读的主观性,给诊断带来了重大挑战。人工智能(AI)已成为提高诊断准确性的一种有前景的工具,但其临床应用仍然有限。本系统综述综合了关于AI在基于超声的妇科肿瘤诊断中的应用的证据,评估了性能指标、方法学优势和局限性,以指导未来的研究和临床应用。按照系统评价和Meta分析的首选报告项目(PRISMA)2020指南,在PubMed、医学文摘数据库(Embase)、电气和电子工程师协会数据库(IEEE Xplore)、Scopus以及科学引文索引数据库中进行了全面检索,共获得252条记录。在去除重复记录并筛选标题/摘要后,对106项研究进行了评估,其中26项符合纳入标准。符合条件的研究调查了使用超声进行妇科肿瘤诊断的AI模型。提取了关于研究设计、样本量、AI方法、性能指标和临床适用性的数据。使用诊断准确性研究质量评估-2(QUADAS-2)评估偏倚风险。由于方法学的异质性,进行了叙述性综合分析。26项纳入研究显示出强大的诊断性能,AI模型在区分良性和恶性肿瘤方面的准确率达到75%-99.8%,曲线下面积(AUC)高达0.99。在大多数研究中,深度学习架构(如卷积神经网络(CNN)、残差神经网络(ResNet))优于传统机器学习,特别是在将放射组学与临床变量(如癌抗原125(CA-125))整合时。然而,成像方案、样本量和验证方法的异质性限制了可比性。只有三项研究采用了前瞻性设计,很少有研究涉及算法偏差或实际临床整合。AI在改善基于超声的妇科肿瘤诊断方面显示出巨大潜力,与传统方法相比具有更高的准确性和可重复性。然而,需要标准化的成像方案、强有力的外部验证和前瞻性试验,才能将这些工具转化为临床实践。未来的工作应优先考虑可解释的AI、多样化的数据集和结果研究,以确保公平有效的实施。