文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

带状疱疹诊断、治疗与管理的进展:人工智能应用的系统评价

Advancements in Herpes Zoster Diagnosis, Treatment, and Management: Systematic Review of Artificial Intelligence Applications.

作者信息

Wu Dasheng, Liu Na, Ma Rui, Wu Peilong

机构信息

Department of Pain Management, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Chaoyang District, Changchun, 130021, China, 86 0431-85595114.

出版信息

J Med Internet Res. 2025 Jun 30;27:e71970. doi: 10.2196/71970.


DOI:10.2196/71970
PMID:40587773
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12234400/
Abstract

BACKGROUND: The application of artificial intelligence (AI) in medicine has garnered significant attention in recent years, offering new possibilities for improving patient care across various domains. For herpes zoster, a viral infection caused by the reactivation of the varicella-zoster virus, AI technologies have shown remarkable potential in enhancing disease diagnosis, treatment, and management. OBJECTIVE: This study aims to investigate the current research status in the use of AI for herpes zoster, offering a comprehensive synthesis of existing advancements. METHODS: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Three databases of Web of Science Core Collection, PubMed, and IEEE were searched to identify relevant studies on AI applications in herpes zoster research on November 17, 2023. Inclusion criteria were as follows: (1) research articles, (2) published in English, (3) involving actual AI applications, and (4) focusing on herpes zoster. Exclusion criteria comprised nonresearch articles, non-English papers, and studies only mentioning AI without application. Two independent clinicians screened the studies, with a third senior clinician resolving disagreements. In total, 26 articles were included. Data were extracted on AI task types; algorithms; data sources; data types; and clinical applications in diagnosis, treatment, and management. RESULTS: Trend analysis revealed an increasing annual interest in AI applications for herpes zoster. Hospital-derived data were the primary source (15/26, 57.7%), followed by public databases (6/26, 23.1%) and internet data (5/26, 19.2%). Medical images (9/26, 34.6%) and electronic medical records (7/26, 26.9%) were the most commonly used data types. Classification tasks (85.2%) dominated AI applications, with neural networks, particularly multilayer perceptron and convolutional neural networks being the most frequently used algorithms. AI applications were analyzed across three domains: (1) diagnosis, where mobile deep neural networks, convolutional neural network ensemble models, and mixed-scale attention-based models have improved diagnostic accuracy and efficiency; (2) treatment, where machine learning models, such as deep autoencoders combined with functional magnetic resonance imaging, electroencephalography, and clinical data, have enhanced treatment outcome predictions; and (3) management, where AI has facilitated case identification, epidemiological research, health care burden assessment, and risk factor exploration for postherpetic neuralgia and other complications. CONCLUSIONS: Overall, this study provides a comprehensive overview of AI applications in herpes zoster from clinical, data, and algorithmic perspectives, offering valuable insights for future research in this rapidly evolving field. AI has significantly advanced herpes zoster research by enhancing diagnostic accuracy, predicting treatment outcomes, and optimizing disease management. However, several limitations exist, including potential omissions from excluding databases like Embase and Scopus, language bias due to the inclusion of only English publications, and the risk of subjective bias in study selection. Broader studies and continuous updates are needed to fully capture the scope of AI applications in herpes zoster in the future.

摘要

背景:近年来,人工智能(AI)在医学领域的应用备受关注,为改善各领域患者护理提供了新的可能性。对于由水痘-带状疱疹病毒再激活引起的病毒性感染带状疱疹,人工智能技术在加强疾病诊断、治疗和管理方面显示出显著潜力。 目的:本研究旨在调查人工智能在带状疱疹应用方面的当前研究现状,全面综合现有进展。 方法:按照PRISMA(系统评价与Meta分析优先报告项目)指南进行系统文献综述。于2023年11月17日在Web of Science核心合集、PubMed和IEEE这三个数据库中进行检索,以识别带状疱疹研究中人工智能应用的相关研究。纳入标准如下:(1)研究文章;(2)以英文发表;(3)涉及实际人工智能应用;(4)聚焦于带状疱疹。排除标准包括非研究文章、非英文论文以及仅提及人工智能而无应用的研究。两名独立的临床医生筛选研究,由第三名资深临床医生解决分歧。共纳入26篇文章。提取了关于人工智能任务类型、算法、数据来源、数据类型以及诊断、治疗和管理方面的临床应用的数据。 结果:趋势分析显示,对带状疱疹人工智能应用的年度关注度不断增加。医院来源的数据是主要来源(15/26,57.7%),其次是公共数据库(6/26,23.1%)和互联网数据(5/26,19.2%)。医学图像(9/26,34.6%)和电子病历(7/26,26.9%)是最常用的数据类型。分类任务(85.2%)在人工智能应用中占主导地位,神经网络,特别是多层感知器和卷积神经网络是最常用的算法。人工智能应用在三个领域进行了分析:(1)诊断,其中移动深度神经网络、卷积神经网络集成模型和基于混合尺度注意力的模型提高了诊断准确性和效率;(2)治疗,其中机器学习模型,如结合功能磁共振成像、脑电图和临床数据的深度自动编码器,增强了治疗结果预测;(3)管理,其中人工智能促进了病例识别、流行病学研究、医疗负担评估以及带状疱疹后神经痛和其他并发症的危险因素探索。 结论:总体而言,本研究从临床、数据和算法角度全面概述了人工智能在带状疱疹中的应用,为这一快速发展领域的未来研究提供了有价值的见解。人工智能通过提高诊断准确性、预测治疗结果和优化疾病管理,显著推动了带状疱疹研究。然而,存在一些局限性,包括排除Embase和Scopus等数据库可能导致潜在遗漏、仅纳入英文出版物存在语言偏见以及研究选择中存在主观偏见的风险。未来需要更广泛的研究和持续更新,以全面涵盖人工智能在带状疱疹中的应用范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/b44bbac88997/jmir-v27-e71970-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/fe0d074a262c/jmir-v27-e71970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/1d0d0ef121ec/jmir-v27-e71970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/d49e47f0fcde/jmir-v27-e71970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/b44bbac88997/jmir-v27-e71970-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/fe0d074a262c/jmir-v27-e71970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/1d0d0ef121ec/jmir-v27-e71970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/d49e47f0fcde/jmir-v27-e71970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3146/12234400/b44bbac88997/jmir-v27-e71970-g004.jpg

相似文献

[1]
Advancements in Herpes Zoster Diagnosis, Treatment, and Management: Systematic Review of Artificial Intelligence Applications.

J Med Internet Res. 2025-6-30

[2]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[3]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[5]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[6]
A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery.

Ann Vasc Surg. 2022-9

[7]
The clinical effectiveness and cost-effectiveness of technologies used to visualise the seizure focus in people with refractory epilepsy being considered for surgery: a systematic review and decision-analytical model.

Health Technol Assess. 2012

[8]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[9]
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.

J Med Internet Res. 2025-6-23

[10]
The Role of Artificial Intelligence and Machine Learning Applications in Emergency Surgery: A Systematic Review of Diagnostic Accuracy and Clinical Outcomes.

Cureus. 2025-6-5

本文引用的文献

[1]
Large Language Models in Worldwide Medical Exams: Platform Development and Comprehensive Analysis.

J Med Internet Res. 2024-12-27

[2]
Advancing Chinese biomedical text mining with community challenges.

J Biomed Inform. 2024-9

[3]
CECT: Controllable ensemble CNN and transformer for COVID-19 image classification.

Comput Biol Med. 2024-5

[4]
Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review.

Artif Intell Med. 2023-12

[5]
Healthy ageing: Herpes zoster infection and the role of zoster vaccination.

NPJ Vaccines. 2023-11-28

[6]
Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment.

J Hematol Oncol. 2023-11-27

[7]
Federated electronic health records for the European Health Data Space.

Lancet Digit Health. 2023-11

[8]
Prediction models using artificial intelligence and longitudinal data from electronic health records: a systematic methodological review.

J Am Med Inform Assoc. 2023-11-17

[9]
Mining electronic health records using artificial intelligence: Bibliometric and content analyses for current research status and product conversion.

J Biomed Inform. 2023-10

[10]
Exploring machine learning methods for predicting systemic lupus erythematosus with herpes.

Int J Rheum Dis. 2023-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索