Suppr超能文献

新型纳米级银-金属有机框架在反渗透膜上的简便外延生长:提高性能、抗菌活性及抗(生物)污染能力

Facile Epitaxial Growth of Novel Nanoscale Ag-MAFs on Reverse Osmosis Membranes: Enhancing Performance, Antibacterial Activity, and (Bio)fouling Resistance.

作者信息

Seyedpour Seyedeh Fatemeh, Karami Pooria, Khoshhal Salestan Saeed, Aghapour Aktij Sadegh, Singh Upasana, Huang Suyenna, Chew Jia Wei, Rahimpour Ahmad, Wishart David, Sadrzadeh Mohtada

机构信息

Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 9211 116 Street NW, Edmonton, Alberta T6G 1H9, Canada.

Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, Alberta T6G 2E9, Canada.

出版信息

ACS Omega. 2025 Jun 23;10(26):28191-28209. doi: 10.1021/acsomega.5c02816. eCollection 2025 Jul 8.

Abstract

The increasing demand for advanced thin-film composite (TFC) membranes stems from the limitations of current commercial membranes, particularly their vulnerability to biofouling. In this study, novel silver-based metal-azolate frameworks (Ag-MAFs) were grown insitu on the surface of TFC reverse osmosis (RO) membranes. This functionalization resulted in a 45% increase in permeate flux without compromising salt rejection (97.6%) compared to pristine TFC membranes. The surface functionalization process is rapid, non-destructive, and employs eco-friendly solvents, silver salts, and amino-benzimidazole ligands, enabling repeatable modifications without affecting separation efficiency. The successful integration of Ag-MAFs onto the membrane surface was confirmed through comprehensive chemical characterization, including Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray (EDX) analysis. Notably, Ag-MAFs demonstrated strong stability, with no detectable leaching or detachment after 20 days of continuous water immersion. Morphological analysis using scanning electron microscopy (SEM) and confocal microscopy revealed that Ag-MAFs nanoparticles imparted robust antibacterial activity, reducing live bacterial populations by nearly 99%. Filtration tests showed that Ag-MAFs functionalized membranes exhibited superior fouling resistance and higher water recovery ratios than pristine membranes during a 10 h filtration cycle. This study presents a scalable and reproducible approach for developing advanced antibiofouling TFC membranes capable of long-term operation, eliminating the need for module disassembly and enhancing membrane longevity in practical applications.

摘要

对先进的薄膜复合(TFC)膜的需求不断增加,这源于当前商业膜的局限性,特别是它们易受生物污染的影响。在本研究中,新型银基金属唑酸盐框架(Ag-MAFs)原位生长在TFC反渗透(RO)膜表面。与原始TFC膜相比,这种功能化使渗透通量提高了45%,同时不影响脱盐率(97.6%)。表面功能化过程快速、无损,并且使用环保型溶剂、银盐和氨基苯并咪唑配体,能够进行可重复的修饰而不影响分离效率。通过全面的化学表征,包括傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和能量色散X射线(EDX)分析,证实了Ag-MAFs成功整合到膜表面。值得注意的是,Ag-MAFs表现出很强的稳定性,在连续水浸20天后没有检测到浸出或脱落。使用扫描电子显微镜(SEM)和共聚焦显微镜进行的形态分析表明,Ag-MAFs纳米颗粒具有强大抗菌活性,使活细菌数量减少了近99%。过滤测试表明,在10小时的过滤循环中,Ag-MAFs功能化膜比原始膜表现出更好的抗污染性能和更高的水回收率。本研究提出了一种可扩展且可重复的方法,用于开发能够长期运行的先进抗生物污染TFC膜,无需拆卸组件,并在实际应用中提高膜的使用寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f07/12242634/12066a6a7176/ao5c02816_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验