文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于Q学习的多变量非线性模型预测控制器:间歇式反应器温度轨迹跟踪的实验验证

Q‑Learning-Based Multivariate Nonlinear Model Predictive Controller: Experimental Validation on Batch Reactor for Temperature Trajectory Tracking.

作者信息

Vegesna Abhiram Varma, Shamaiah Narayanarao Muralikrishna, Bhamidipati Kishore, Indiran Thirunavukkarasu

机构信息

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India.

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India.

出版信息

ACS Omega. 2025 Jun 26;10(26):28362-28371. doi: 10.1021/acsomega.5c03482. eCollection 2025 Jul 8.


DOI:10.1021/acsomega.5c03482
PMID:40657105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12242636/
Abstract

This study introduces a Q-learning-based nonlinear model predictive control (QL-NMPC) framework for temperature control in batch reactors. A reinforcement learning agent is trained in simulation to learn optimal control strategies using coolant flow rate and heater current as inputs. The resulting policy, represented as a Q-table, is implemented in real time on a physical reactor setup using the NVIDIA Jetson Orin platform. The proposed QL-NMPC framework employs a value iteration-based Q-learning algorithm, enabling model-free policy optimization without explicit policy evaluation steps, and demonstrates effective temperature tracking while highlighting the potential of reinforcement learning for controlling nonlinear batch processes without relying on system identification.

摘要

本研究介绍了一种基于Q学习的非线性模型预测控制(QL-NMPC)框架,用于间歇式反应器中的温度控制。在模拟中训练一个强化学习智能体,以使用冷却剂流速和加热器电流作为输入来学习最优控制策略。得到的策略以Q表的形式表示,在使用NVIDIA Jetson Orin平台的物理反应器装置上实时实施。所提出的QL-NMPC框架采用基于值迭代的Q学习算法,无需明确的策略评估步骤即可实现无模型策略优化,并展示了有效的温度跟踪,同时突出了强化学习在不依赖系统辨识的情况下控制非线性间歇过程的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/0127cd663608/ao5c03482_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/ea8198000c03/ao5c03482_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/25b73f6b842a/ao5c03482_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/4fdcaf9c471d/ao5c03482_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/a200a9aaf87e/ao5c03482_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/de1511f3649b/ao5c03482_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/33987070486c/ao5c03482_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/97fc14bbf42f/ao5c03482_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/01ef7dc2aab7/ao5c03482_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/d9dd687f7a46/ao5c03482_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/0127cd663608/ao5c03482_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/ea8198000c03/ao5c03482_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/25b73f6b842a/ao5c03482_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/4fdcaf9c471d/ao5c03482_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/a200a9aaf87e/ao5c03482_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/de1511f3649b/ao5c03482_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/33987070486c/ao5c03482_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/97fc14bbf42f/ao5c03482_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/01ef7dc2aab7/ao5c03482_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/d9dd687f7a46/ao5c03482_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0414/12242636/0127cd663608/ao5c03482_0010.jpg

相似文献

[1]
Q‑Learning-Based Multivariate Nonlinear Model Predictive Controller: Experimental Validation on Batch Reactor for Temperature Trajectory Tracking.

ACS Omega. 2025-6-26

[2]
Reinforcement Learning-Based Nonlinear Model Predictive Controller for a Jacketed Reactor: A Machine Learning Concept Validation Using Jetson Orin.

ACS Omega. 2025-7-9

[3]
Inverse RL Scene Dynamics Learning for Nonlinear Predictive Control in Autonomous Vehicles.

IEEE Trans Neural Netw Learn Syst. 2025-8

[4]
Accelerated Value Iteration-Based Safe Q-Learning for Data-Driven Optimal Tracking Control.

IEEE Trans Cybern. 2025-7

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Adaptive Model Predictive Control for 4WD-4WS Mobile Robot: A Multivariate Gaussian Mixture Model-Ant Colony Optimization for Robust Trajectory Tracking and Obstacle Avoidance.

Sensors (Basel). 2025-6-18

[7]
Privacy-Preserving Glycemic Management in Type 1 Diabetes: Development and Validation of a Multiobjective Federated Reinforcement Learning Framework.

JMIR Diabetes. 2025-7-4

[8]
Deep Reinforcement Learning-Based Self-Optimization of Flow Chemistry.

ACS Eng Au. 2025-5-13

[9]
Design of a novel and robust 2-DOF PIDA controller based on enzyme action optimizer for ball position regulation in magnetic levitation systems.

Sci Rep. 2025-8-11

[10]
PENC: a predictive-estimative nonlinear control framework for robust target tracking of fixed-wing UAVs in complex urban environments.

Sci Rep. 2025-8-13

本文引用的文献

[1]
CNN-LSTM-Based Nonlinear Model Predictive Controller for Temperature Trajectory Tracking in a Batch Reactor.

ACS Omega. 2024-11-12

[2]
Machine Learning Based Fault Classification in Pilot Plant Batch Reactor: Using Support Vector Machine.

ACS Omega. 2024-6-19

[3]
Development and Validation of Advanced Nonlinear Predictive Control Algorithms for Trajectory Tracking in Batch Polymerization.

ACS Omega. 2021-8-26

[4]
Model-Free Optimal Tracking Control via Critic-Only Q-Learning.

IEEE Trans Neural Netw Learn Syst. 2016-7-12

[5]
Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.

IEEE Trans Cybern. 2016-4-11

[6]
Fidelity-based probabilistic Q-learning for control of quantum systems.

IEEE Trans Neural Netw Learn Syst. 2014-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索