文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine Learning Based Fault Classification in Pilot Plant Batch Reactor: Using Support Vector Machine.

作者信息

Simiyon Arockiaraj, Sachidanand Chaitanya, Halmakki Krishnamurthy Manthana, Bhatt Ananya V, Indiran Thirunavukkarasu

机构信息

Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal 576 104, India.

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.

出版信息

ACS Omega. 2024 Jun 19;9(26):29041-29052. doi: 10.1021/acsomega.4c04421. eCollection 2024 Jul 2.


DOI:10.1021/acsomega.4c04421
PMID:38973920
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11223234/
Abstract

Identifying and diagnosing faults is a critical task in process industries to maintain effective monitoring of process and plant safety. Minimizing process downtime is critical for enhancing the quality of the product and minimizing production costs. Real-time categorization of issues across several levels is essential for the monitoring of processes. However, there are still notable obstacles, that must be addressed, such as the existence of robust correlations, the complexity of the data, and the lack of linearity. This study introduces a novel fault identification technique in batch reactor experimental trials that employs multikernel support vector machines (SVMs) to categorize internal and external issues, specifically reactor temperature, coolant temperature, and jacket temperature. The data set was obtained from empirical research. The classification has been conducted using a multikernel SVM. This article identified that the nonlinear classifier using the radial bias function results in an accuracy that is at least 22.08% superior to other methods.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/666cb4e4fc29/ao4c04421_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/1bdd46aa03e3/ao4c04421_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/90082858de88/ao4c04421_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/59b8f0bf4999/ao4c04421_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/0540f7950f6e/ao4c04421_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/4f083ddf95b8/ao4c04421_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/b842dd69d2d5/ao4c04421_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/3f266257d0bd/ao4c04421_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/5af410a01bfc/ao4c04421_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/9e087b786714/ao4c04421_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/92a6e7a94f35/ao4c04421_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/7d6e13cc7de5/ao4c04421_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/af0868fbbac4/ao4c04421_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/c1f311d39cd9/ao4c04421_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/666cb4e4fc29/ao4c04421_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/1bdd46aa03e3/ao4c04421_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/90082858de88/ao4c04421_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/59b8f0bf4999/ao4c04421_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/0540f7950f6e/ao4c04421_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/4f083ddf95b8/ao4c04421_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/b842dd69d2d5/ao4c04421_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/3f266257d0bd/ao4c04421_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/5af410a01bfc/ao4c04421_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/9e087b786714/ao4c04421_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/92a6e7a94f35/ao4c04421_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/7d6e13cc7de5/ao4c04421_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/af0868fbbac4/ao4c04421_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/c1f311d39cd9/ao4c04421_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c1/11223234/666cb4e4fc29/ao4c04421_0014.jpg

相似文献

[1]
Machine Learning Based Fault Classification in Pilot Plant Batch Reactor: Using Support Vector Machine.

ACS Omega. 2024-6-19

[2]
Simultaneous Fault Detection and Identification in Continuous Processes via nonlinear Support Vector Machine based Feature Selection.

Int Symp Process Syst Eng. 2018

[3]
Big Data Approach to Batch Process Monitoring: Simultaneous Fault Detection and Diagnosis Using Nonlinear Support Vector Machine-based Feature Selection.

Comput Chem Eng. 2018-7-12

[4]
Achieving Reliability in Cloud Computing by a Novel Hybrid Approach.

Sensors (Basel). 2023-2-9

[5]
Hybrid Random Forest and Support Vector Machine Modeling for HVAC Fault Detection and Diagnosis.

Sensors (Basel). 2021-12-7

[6]
A linear-RBF multikernel SVM to classify big text corpora.

Biomed Res Int. 2015

[7]
A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

Sensors (Basel). 2018-6-14

[8]
Data-Driven Modeling of a Pilot Plant Batch Reactor and Validation of a Nonlinear Model Predictive Controller for Dynamic Temperature Profile Tracking.

ACS Omega. 2021-6-21

[9]
Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.

Sensors (Basel). 2016-11-10

[10]
Real-time fault classification for plasma processes.

Sensors (Basel). 2011-7-6

引用本文的文献

[1]
Q‑Learning-Based Multivariate Nonlinear Model Predictive Controller: Experimental Validation on Batch Reactor for Temperature Trajectory Tracking.

ACS Omega. 2025-6-26

本文引用的文献

[1]
Neural Network-Based Hammerstein Model Identification of a Lab-Scale Batch Reactor.

ACS Omega. 2023-12-21

[2]
Wiener-Neural-Network-Based Modeling and Validation of Generalized Predictive Control on a Laboratory-Scale Batch Reactor.

ACS Omega. 2022-5-3

[3]
Development and Validation of Advanced Nonlinear Predictive Control Algorithms for Trajectory Tracking in Batch Polymerization.

ACS Omega. 2021-8-26

[4]
Data-Driven Modeling of a Pilot Plant Batch Reactor and Validation of a Nonlinear Model Predictive Controller for Dynamic Temperature Profile Tracking.

ACS Omega. 2021-6-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索