Jeon Hyunsu, Zanon Tiago Thomaz Migliati, Carpenter James, Ilias Aliciana, Colón Yamil, Wang Yichun
Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame IN 46556 USA.
Department of Neuroscience Saint Mary's College Notre Dame IN 46556 USA.
Small Sci. 2025 Feb 10;5(4):2400440. doi: 10.1002/smsc.202400440. eCollection 2025 Apr.
Enhanced drug testing efficiency has driven the prominence of high-content and high-throughput screening (HCHTS) in drug discovery and development. However, traditional HCHTS in well-plates often lack complexity of in vivo conditions. 3D cell cultures, like cellular spheroids/organoids, offer a promising alternative by replicating in vivo conditions and improving the reliability of drug responses. Integrating spheroids/organoids into HCHTS requires strategies to ensure uniform formation, systemic function, and compatibility with analysis techniques. This study introduces an easy-to-fabricate, low-cost, safe, and scalable approach to create a bioinert hydrogel-based inverted colloidal crystal (BhiCC) framework for uniform and high-yield spheroid cultivation. Highly uniform alginate microgels are fabricated and assembled into a colloidal crystal template with controllable contact area, creating engineered void spaces and interconnecting channels within agarose-based BhiCC through the template degradation by alginate lyase and buffer. This results in a multi-layered iCC domain, enabling the generation of in-vitro 3D culture models with over 1000 spheroids per well in a 96-well plate. The unique hexagonal-close-packed geometry of iCC structure enables HCHTS through conventional plate reader analysis and fluorescent microscopy assisted by house-developed automated data processing algorithm. This advancement offers promising applications in tissue engineering, disease modeling, and drug development in biomedical research.
药物检测效率的提高推动了高内涵和高通量筛选(HCHTS)在药物发现和开发中的突出地位。然而,传统的微孔板HCHTS往往缺乏体内条件的复杂性。3D细胞培养,如细胞球体/类器官,通过复制体内条件并提高药物反应的可靠性,提供了一种有前景的替代方法。将球体/类器官整合到HCHTS中需要确保均匀形成、系统功能以及与分析技术兼容性的策略。本研究介绍了一种易于制造、低成本、安全且可扩展的方法,用于创建基于生物惰性水凝胶的倒置胶体晶体(BhiCC)框架,以实现均匀且高产率的球体培养。制备高度均匀的藻酸盐微凝胶,并将其组装成具有可控接触面积的胶体晶体模板,通过藻酸酶和缓冲液对模板的降解,在基于琼脂糖的BhiCC内创建工程化的空隙空间和相互连接的通道。这产生了一个多层iCC结构域,能够在96孔板中每孔生成超过1000个球体的体外3D培养模型。iCC结构独特的六方密堆积几何形状通过传统的酶标仪分析和由自主开发的自动数据处理算法辅助的荧光显微镜实现HCHTS。这一进展在生物医学研究的组织工程、疾病建模和药物开发中具有广阔的应用前景。