Suppr超能文献

用于结核病管理中精准医疗的基于网络的自动化治疗药物监测应用程序。

Web-based automated therapeutic drug monitoring application for precision medicine in tuberculosis management.

作者信息

Choi Young-Kyung, Jayanti Rannissa Puspita, Uyen Nguyen Thuy Ha, Cho Yong-Soon, Shin Jae-Gook

机构信息

Center for Personalized Precision Medicine of Tuberculosis (cPMTb), Inje University College of Medicine, Busan 47392, Korea.

Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Korea.

出版信息

Transl Clin Pharmacol. 2025 Jun;33(2):51-65. doi: 10.12793/tcp.2025.33.e9. Epub 2025 Jun 27.

Abstract

Tuberculosis (TB) remains one of the leading causes of infectious disease-related deaths worldwide. Model-informed precision dosing-based therapeutic drug monitoring (TDM) is a promising strategy to optimize anti-TB drugs doses based on pharmacokinetic (PK) profiles of patients. However, this approach requires significant time and trained personnel to interpret the results. To address this limitation, we developed and utilized an automated, web-based TDM platform that simplifies implementation and enhances accessibility, ultimately aiming to improve treatment outcomes. The system incorporates population PK models for both first- and second-line anti-TB drugs, integrating clinical data including demographics, genotype and drug concentrations from limited sampling strategies. Bayesian forecasting is used to estimate individual PK parameters and simulate optimized dosing regimens. Clinicians can use the platform to automatically generate the individual concentration-time curve plot that compares a patient's exposure with population level references, along with a table displaying the estimated individual PK parameters. If the dose adjustment is needed, users may input alternative regimens and run the simulation to predict the corresponding PK metrics. These features enable users to visualize predicted outcomes, compare exposures against therapeutic targets, and support optimal dose selection. The system produces downloadable reports containing patient specific data, PK parameter values, graphical PK profiles, and pharmacogenomic interpretations with minimal user input. This automated web-based platform enhances the time-efficiency and accessibility of TDM, making it a practical tool for personalized TB therapy. It is especially valuable in resource-limited settings where expert support is limited, by supporting clinical decision making and improving patient outcomes.

摘要

结核病(TB)仍然是全球传染病相关死亡的主要原因之一。基于模型的精准给药治疗药物监测(TDM)是一种很有前景的策略,可根据患者的药代动力学(PK)特征优化抗结核药物剂量。然而,这种方法需要大量时间和训练有素的人员来解读结果。为了解决这一局限性,我们开发并利用了一个基于网络的自动化TDM平台,该平台简化了实施过程并提高了可及性,最终目标是改善治疗效果。该系统纳入了一线和二线抗结核药物的群体PK模型,整合了包括人口统计学、基因型和来自有限采样策略的药物浓度等临床数据。贝叶斯预测用于估计个体PK参数并模拟优化的给药方案。临床医生可以使用该平台自动生成个体浓度-时间曲线图,将患者的药物暴露情况与群体水平参考值进行比较,同时生成一个表格,显示估计的个体PK参数。如果需要调整剂量,用户可以输入替代方案并运行模拟,以预测相应的PK指标。这些功能使用户能够直观地看到预测结果,将药物暴露情况与治疗靶点进行比较,并支持最佳剂量选择。该系统只需用户极少的输入,就能生成包含患者特定数据、PK参数值、图形化PK曲线和药物基因组学解释的可下载报告。这个基于网络的自动化平台提高了TDM的时间效率和可及性,使其成为个性化结核病治疗的实用工具。在专家支持有限的资源匮乏环境中,它通过支持临床决策和改善患者治疗效果,具有特别重要的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73f3/12242390/adbd59f70e1b/tcp-33-51-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验