Suppr超能文献

利用脑功能网络拓扑改变进行中风后失语症分析。

Post-stroke aphasia analysis using topological alterations in brain functional networks.

作者信息

Zhong Yuming, Mahmoud Seedahmed S, Huang Li, Fang Qiang

机构信息

Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, People's Republic of China.

Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.

出版信息

J Neural Eng. 2025 Jul 24;22(4). doi: 10.1088/1741-2552/adef80.

Abstract

. Nearly one-third of stroke patients develop aphasia. Although the function of classical language areas (e.g. Broca's area, Wernicke's area) has been widely characterized, the network reorganization mechanisms behind specific language dysfunctions induced by different aphasia subtypes and the biomarkers for a rapid and objective classification remain to be clarified. Additionally, the rapid classification of aphasia subtypes continues to be a clinical challenge.. To address these gaps, we developed a diagnostic framework analyzing topological changes in resting-state fMRI-derived functional brain networks. A transparent feature selection pipeline is designed through combining the topological features, the ReliefF algorithm, the elbow method, and cross-validation to alleviate the limitation of available aphasia datasets.. Using a cubic SVM classifier, the proposed model achieved 88.70% ± 1.37% accuracy and a 92.92% ± 0.78% F1 score in distinguishing post-stroke aphasia patients (PWA) from non-aphasic stroke patients patients without aphasia (PWOA) on a public dataset. Further validation on an in-house dataset (13 patients with PWA and 25 normal post-stroke patients) showed similar performance (88.1% accuracy, 92.76% F1 score), demonstrating robustness. Further functional connectivity analysis revealed PWA exhibit higher global/local network efficiency, increased clustering, and shorter path lengths than PWOA. Subtype analysis for Anomic, Broca, Conduction, and Global aphasia identified distinct neural patterns via one-way ANOVA, suggesting divergent pathophysiology.. The proposed framework not only improves classification accuracy but also enhances interpretability and reproducibility. Thus, it could form the basis of a new objective diagnostic approach for aphasia.

摘要

近三分之一的中风患者会出现失语症。尽管经典语言区域(如布洛卡区、韦尼克区)的功能已得到广泛描述,但不同失语症亚型导致的特定语言功能障碍背后的网络重组机制以及快速客观分类的生物标志物仍有待阐明。此外,失语症亚型的快速分类仍然是一项临床挑战。为了填补这些空白,我们开发了一个诊断框架,用于分析静息态功能磁共振成像衍生的功能脑网络中的拓扑变化。通过结合拓扑特征、ReliefF算法、肘部方法和交叉验证,设计了一个透明的特征选择管道,以缓解可用失语症数据集的局限性。使用立方支持向量机分类器,所提出的模型在一个公共数据集上区分中风后失语症患者(PWA)和无失语症的中风患者(PWOA)时,准确率达到88.70%±1.37%,F1分数达到92.92%±0.78%。在内部数据集(13名PWA患者和25名正常中风后患者)上的进一步验证显示了类似的性能(准确率88.1%,F1分数92.76%),证明了其稳健性。进一步的功能连接分析表明,与PWOA相比,PWA表现出更高的全局/局部网络效率、增加的聚类和更短的路径长度。对命名性失语、布洛卡失语、传导性失语和完全性失语的亚型分析通过单因素方差分析确定了不同的神经模式,表明其病理生理学存在差异。所提出的框架不仅提高了分类准确率,还增强了可解释性和可重复性。因此,它可以构成一种新的失语症客观诊断方法的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验