Suppr超能文献

逻辑魔法态蒸馏的实验演示。

Experimental demonstration of logical magic state distillation.

作者信息

Sales Rodriguez Pedro, Robinson John M, Jepsen Paul Niklas, He Zhiyang, Duckering Casey, Zhao Chen, Wu Kai-Hsin, Campo Joseph, Bagnall Kevin, Kwon Minho, Karolyshyn Thomas, Weinberg Phillip, Cain Madelyn, Evered Simon J, Geim Alexandra A, Kalinowski Marcin, Li Sophie H, Manovitz Tom, Amato-Grill Jesse, Basham James I, Bernstein Liane, Braverman Boris, Bylinskii Alexei, Choukri Adam, DeAngelo Robert J, Fang Fang, Fieweger Connor, Frederick Paige, Haines David, Hamdan Majd, Hammett Julian, Hsu Ning, Hu Ming-Guang, Huber Florian, Jia Ningyuan, Kedar Dhruv, Kornjač Milan, Liu Fangli, Long John, Lopatin Jonathan, Lopes Pedro L S, Luo Xiu-Zhe, Macrì Tommaso, Marković Ognjen, Martínez-Martínez Luis A, Meng Xianmei, Ostermann Stefan, Ostroumov Evgeny, Paquette David, Qiang Zexuan, Shofman Vadim, Singh Anshuman, Singh Manuj, Sinha Nandan, Thoreen Henry, Wan Noel, Wang Yiping, Waxman-Lenz Daniel, Wong Tak, Wurtz Jonathan, Zhdanov Andrii, Zheng Laurent, Greiner Markus, Keesling Alexander, Gemelke Nathan, Vuletić Vladan, Kitagawa Takuya, Wang Sheng-Tao, Bluvstein Dolev, Lukin Mikhail D, Lukin Alexander, Zhou Hengyun, Cantú Sergio H

机构信息

QuEra Computing Inc., Boston, Massachusetts, USA.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Nature. 2025 Jul 14. doi: 10.1038/s41586-025-09367-3.

Abstract

Realizing universal fault-tolerant quantum computation is a key goal in quantum information science [1, 2, 3, 4]. By encoding quantum information into logical qubits utilizing quantum error correcting codes, physical errors can be detected and corrected, enabling substantial reduction in logical error rates [5, 6, 7, 8, 9, 10, 11]. However, the set of logical operations that can be easily implemented on such encoded qubits is often constrained [12, 1], necessitating the use of special resource states known as 'magic states' [13] to implement universal, classically hard circuits [14]. A key method to prepare high-fidelity magic states is to perform 'distillation', creating them from multiple lower fidelity inputs [15, 13]. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach makes use of a dynamically reconfigurable architecture [16, 8] to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d  =  3 and d  =  5 color codes, observing improvements of the logical fidelity of the output magic states compared to the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation, and represent an important step towards large-scale logical quantum processors.

摘要

实现通用容错量子计算是量子信息科学的一个关键目标[1, 2, 3, 4]。通过利用量子纠错码将量子信息编码到逻辑量子比特中,可以检测和纠正物理错误,从而大幅降低逻辑错误率[5, 6, 7, 8, 9, 10, 11]。然而,在此类编码量子比特上能够轻松实现的逻辑操作集通常受到限制[12, 1],因此需要使用被称为“魔法态”的特殊资源态[13]来实现通用的、经典计算困难的电路[14]。制备高保真魔法态的一种关键方法是进行“纯化”,即从多个较低保真度的输入中创建它们[15, 13]。在此,我们展示了在中性原子量子计算机上使用逻辑量子比特进行魔法态纯化的实验实现。我们的方法利用了动态可重构架构[16, 8]来并行地对多个逻辑量子比特进行编码和执行量子操作。我们展示了在d = 3和d = 5颜色码中编码的魔法态的纯化过程,观察到输出魔法态的逻辑保真度相对于输入逻辑魔法态有所提高。这些实验展示了通用容错量子计算的一个关键构建模块,并代表了朝着大规模逻辑量子处理器迈出的重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验