Gluza Joanna, Machnik Joanna, Szatkiewicz Malgorzata, Craxton Andrew, Hardwick Steven W, Amin Himani, Sąsiadek Maria M, MacFarlane Marion, Chodaczek Grzegorz, Chaplin Amanda K, Malewicz Michal
Łukasiewicz Research Network - Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland.
Łukasiewicz Research Network - Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland; Wroclaw Medical University, Pasteura 1, 50-367 Wrocław, Poland.
J Biol Chem. 2025 Jul 12:110481. doi: 10.1016/j.jbc.2025.110481.
In mammalian cells DNA double strand breaks (DSBs) are primarily repaired via classical non-homologous end joining (c-NHEJ) - one of the most essential DNA repair pathways. As NHEJ does not utilize a template, this type of repair is the default mechanism for eliminating DSBs occurring in non-cycling cells. NHEJ is a crucial process in mammals, and defects of this repair pathway often result in immunological impairment owing to failure of somatic recombination in lymphocytes and improper neuronal biogenesis. The NHEJ machinery assembles in a stepwise process at DSBs and proceeds via several key repair phases including break recognition, mediated by Ku proteins (Ku70/80 heterodimer binding to DNA), DNA ends processing and finally DNA ligation. DNA end-bound Ku recruits the large kinase protein DNA-PKcs, and downstream repair-facilitating components such as PAXX, XLF and XRCC4/Ligase IV complex that together facilitate the repair reaction. Processing of DNA breaks can require both nucleotide removal and incorporation, involving a plethora of enzymes such as nucleases and polymerases. It is currently not known which step, if any, limits the completion of the repair process. Here, we describe a single conserved amino acid substitution in PAXX protein Ku70/80 contact interface that dramatically stabilizes the repair complex. This mutation leads to co-dependent mislocalization of PAXX and Ku to the nucleoli. Surprisingly, this novel PAXX gain-of-function mutation accelerates NHEJ repair but only of DSBs that require end processing such as radiation-induced DSBs. Thus, in mammalian NHEJ, the repair complex stability is rate-limiting for the overall repair reaction of DSBs.
在哺乳动物细胞中,DNA双链断裂(DSB)主要通过经典非同源末端连接(c-NHEJ)进行修复,这是最重要的DNA修复途径之一。由于NHEJ不利用模板,这种修复类型是消除非循环细胞中发生的DSB的默认机制。NHEJ在哺乳动物中是一个关键过程,该修复途径的缺陷通常会导致免疫功能受损,这是由于淋巴细胞中的体细胞重组失败和神经元生物发生不当所致。NHEJ机制在DSB处逐步组装,并通过几个关键的修复阶段进行,包括断裂识别(由Ku蛋白介导,Ku70/80异二聚体与DNA结合)、DNA末端加工,最后是DNA连接。与DNA末端结合的Ku招募大型激酶蛋白DNA-PKcs,以及下游促进修复的组件,如PAXX、XLF和XRCC4/连接酶IV复合物,它们共同促进修复反应。DNA断裂的加工可能需要去除和掺入核苷酸,涉及多种酶,如核酸酶和聚合酶。目前尚不清楚哪个步骤(如果有的话)会限制修复过程的完成。在这里,我们描述了PAXX蛋白Ku70/80接触界面中的一个单一保守氨基酸取代,它显著稳定了修复复合物。这种突变导致PAXX和Ku共同依赖地错误定位于核仁。令人惊讶的是,这种新的PAXX功能获得性突变加速了NHEJ修复,但仅加速了需要末端加工的DSB的修复,如辐射诱导的DSB。因此,在哺乳动物NHEJ中,修复复合物的稳定性是DSB整体修复反应的限速因素。