Schrödter Dominika, Mietliński Patryk, Gapiński Bartosz, Dietzel Andreas
Institute of Microtechnology (IMT), Faculty of Mechanical Engineering, Technical University of Braunschweig, Alte Salzdahlumer Straße 203, 38124, Braunschweig, Germany.
Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, Poznań, 61-138, Poland.
Sci Rep. 2025 Jul 14;15(1):25421. doi: 10.1038/s41598-025-11563-0.
Glass substrates are highly valued for their transparency, stability and biocompatibility, making them essential in optics, photonics, chemistry and biomedical devices. Femtosecond lasers enable precise glass ablation due to the capability to deliver pulses with high energy density leading to nonlinear absorption. This study examined how parameters like pulse energy, scan line density and pulse repetition rate affect the surface roughness of 3D borosilicate glass structures. Analysis by means of AFM, µCT and SEM revealed parameter settings to minimize roughness and prevent substrate damage. Post-treatments like HF etching and annealing further enhanced surface quality, resulting in smooth, transparent (T = 85.35%) microstructures especially for novel optical and optofluidic applications.
玻璃基板因其透明度、稳定性和生物相容性而备受重视,使其在光学、光子学、化学和生物医学设备中至关重要。飞秒激光能够产生具有高能量密度的脉冲,从而导致非线性吸收,因此能够实现精确的玻璃烧蚀。本研究考察了脉冲能量、扫描线密度和脉冲重复率等参数如何影响三维硼硅酸盐玻璃结构的表面粗糙度。通过原子力显微镜(AFM)、微计算机断层扫描(µCT)和扫描电子显微镜(SEM)分析,揭示了使粗糙度最小化并防止基板损坏的参数设置。氢氟酸蚀刻和退火等后处理进一步提高了表面质量,从而得到了光滑、透明(透过率T = 85.35%)的微观结构,尤其适用于新型光学和光流体应用。