Loupy Alexandre, Preka Evgenia, Chen Xiangmei, Wang Haibo, He Jianxing, Zhang Kang
Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, Paris, France.
Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, China.
Nat Med. 2025 Jul 14. doi: 10.1038/s41591-025-03801-9.
Organ transplantation remains the sole definitive treatment for many forms of end-stage organ failure, yet donor organ shortages impose life-threatening delays for thousands of patients worldwide. Mechanical supports and dialysis provide only temporary respite, while lifelong immunosuppression poses additional risks-including infections, malignancies and considerable healthcare costs. Recent innovations hold promise for overcoming these barriers. Artificial intelligence tools increasingly guide organ allocation decisions by integrating clinical, demographic and immunological data. They also refine rejection monitoring, personalize immunosuppressive regimens and facilitate virtual patient simulations. Meanwhile, xenotransplantation has progressed through multi-gene editing of donor pigs and improved immunosuppressive protocols, edging closer to mitigating hyperacute rejection in kidney, heart and liver grafts. In parallel, regenerative medicine approaches-spanning stem cell therapies, three-dimensional organoids and three-dimensional bioprinting-are poised to create patient-specific tissues that reduce rejection and enhance graft longevity. Biomaterials and cell encapsulation further offer localized immunosuppression, potentially streamlining post-transplant care. Yet widespread clinical adoption requires rigorous validation, ethical frameworks and interdisciplinary collaboration. By combining artificial intelligence-guided diagnostics, innovative organ engineering and advanced immunotherapies, transplant medicine can progress toward a future in which organ scarcity is alleviated, patient outcomes are optimized and healthcare systems operate with greater efficiency.
器官移植仍然是多种终末期器官衰竭的唯一确定性治疗方法,但供体器官短缺给全球数千名患者带来了危及生命的延误。机械支持和透析只能提供暂时的缓解,而终身免疫抑制会带来额外风险,包括感染、恶性肿瘤和高昂的医疗费用。最近的创新有望克服这些障碍。人工智能工具通过整合临床、人口统计学和免疫学数据,越来越多地指导器官分配决策。它们还改进排斥反应监测、使免疫抑制方案个性化并促进虚拟患者模拟。与此同时,异种移植通过对供体猪进行多基因编辑和改进免疫抑制方案取得了进展,在减轻肾、心和肝移植中的超急性排斥反应方面更进了一步。同时,再生医学方法,包括干细胞疗法、三维类器官和三维生物打印,有望创造出减少排斥反应并延长移植物寿命的患者特异性组织。生物材料和细胞封装进一步提供局部免疫抑制,有可能简化移植后护理。然而,广泛的临床应用需要严格的验证、伦理框架和跨学科合作。通过结合人工智能引导的诊断、创新的器官工程和先进的免疫疗法,移植医学可以朝着一个未来发展,在这个未来中,器官短缺得到缓解,患者预后得到优化,医疗系统的运作效率更高。
Cochrane Database Syst Rev. 2013-12-2
Cochrane Database Syst Rev. 2015-12-3
Cochrane Database Syst Rev. 2013-11-27
Xenotransplantation. 2025
Cochrane Database Syst Rev. 2017-7-21
Cochrane Database Syst Rev. 2022-9-12
ACS Biomater Sci Eng. 2025-3-10