文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

医疗保健领域的DeepSeek:揭示新开源人工智能前沿的机遇与导向挑战

DeepSeek in Healthcare: Revealing Opportunities and Steering Challenges of a New Open-Source Artificial Intelligence Frontier.

作者信息

Temsah Abdulrahman, Alhasan Khalid, Altamimi Ibraheem, Jamal Amr, Al-Eyadhy Ayman, Malki Khalid H, Temsah Mohamad-Hani

机构信息

Software Engineering, Alfaisal University, Riyadh, SAU.

Pediatric Department, College of Medicine, King Saud University, Riyadh, SAU.

出版信息

Cureus. 2025 Feb 18;17(2):e79221. doi: 10.7759/cureus.79221. eCollection 2025 Feb.


DOI:10.7759/cureus.79221
PMID:39974299
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11836063/
Abstract

Generative Artificial Intelligence (GAI) has driven several advancements in healthcare, with large language models (LLMs) such as OpenAI's ChatGPT, Google's Gemini, and Microsoft's Copilot demonstrating potential in clinical decision support, medical education, and research acceleration. However, their closed-source architecture, high computational costs, and limited adaptability to specialized medical contexts remained key barriers to universal adoption. Now, with the rise of DeepSeek's DeepThink (R1), an open-source LLM, gaining prominence since mid-January 2025, new opportunities and challenges emerge for healthcare integration and AI-driven research. Unlike proprietary models, DeepSeek fosters continuous learning by leveraging publicly available open-source datasets, possibly enhancing adaptability to the ever-evolving medical knowledge and scientific reasoning. Its transparent, community-driven approach may enable greater customization, regional specialization, and collaboration among data researchers and clinicians. Additionally, DeepSeek supports offline deployment, addressing some data privacy concerns. Despite these promising advantages, DeepSeek presents ethical and regulatory challenges. Users' data privacy worries have emerged, with concerns about user data retention policies and potential developer access to user-generated content without opt-out options. Additionally, when used in healthcare applications, its compliance with China's data-sharing regulations highlights the urgent need for clear international data privacy and governance. Furthermore, like other LLMs, DeepSeek may face limitations related to inherent biases, hallucinations, and output reliability, which warrants rigorous validation and human oversight before clinical application. This editorial explores DeepSeek's potential role in clinical workflows, medical education, and research while also highlighting its challenges related to security, accuracy, and responsible AI governance. With careful implementation, ethical considerations, and international collaboration, DeepSeek and similar LLMs could enhance healthcare innovation, providing cost-effective, scalable AI solutions while ensuring human expertise remains at the forefront of patient care.

摘要

生成式人工智能(GAI)推动了医疗保健领域的多项进步,诸如OpenAI的ChatGPT、谷歌的Gemini和微软的Copilot等大型语言模型(LLM)在临床决策支持、医学教育和研究加速方面展现出了潜力。然而,它们的闭源架构、高昂的计算成本以及对专业医疗环境的有限适应性仍然是广泛应用的关键障碍。如今,随着自2025年1月中旬以来崭露头角的开源大型语言模型DeepSeek的DeepThink(R1)的兴起,医疗保健整合和人工智能驱动的研究出现了新的机遇和挑战。与专有模型不同,DeepSeek通过利用公开可用的开源数据集促进持续学习,这可能增强其对不断发展的医学知识和科学推理的适应性。其透明的、社区驱动的方法可能实现更大程度的定制、区域专业化以及数据研究人员和临床医生之间的协作。此外,DeepSeek支持离线部署,解决了一些数据隐私问题。尽管有这些有前景的优势,但DeepSeek也带来了伦理和监管方面的挑战。用户对数据隐私的担忧已经出现,涉及对用户数据保留政策的担忧以及开发者在没有退出选项的情况下可能访问用户生成内容的问题。此外,在医疗保健应用中使用时,它对中国数据共享法规的遵守凸显了明确国际数据隐私和治理的迫切需求。此外,与其他大型语言模型一样,DeepSeek可能面临与固有偏差、幻觉和输出可靠性相关的局限性,这在临床应用前需要进行严格验证和人工监督。这篇社论探讨了DeepSeek在临床工作流程、医学教育和研究中的潜在作用,同时也强调了其在安全性、准确性和负责任的人工智能治理方面的挑战。通过谨慎实施、伦理考量和国际合作,DeepSeek及类似的大型语言模型可以促进医疗保健创新,提供具有成本效益、可扩展的人工智能解决方案,同时确保人类专业知识始终处于患者护理的前沿。

相似文献

[1]
DeepSeek in Healthcare: Revealing Opportunities and Steering Challenges of a New Open-Source Artificial Intelligence Frontier.

Cureus. 2025-2-18

[2]
Utilizing large language models for gastroenterology research: a conceptual framework.

Therap Adv Gastroenterol. 2025-4-1

[3]
Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare.

Cureus. 2023-8-10

[4]
DeepSeek Deployed in 90 Chinese Tertiary Hospitals: How Artificial Intelligence Is Transforming Clinical Practice.

J Med Syst. 2025-4-24

[5]
DeepSeek's Readiness for Medical Research and Practice: Prospects, Bottlenecks, and Global Regulatory Constraints.

Ann Biomed Eng. 2025-4-24

[6]
User Intent to Use DeepSeek for Healthcare Purposes and their Trust in the Large Language Model: Multinational Survey Study.

JMIR Hum Factors. 2025-4-7

[7]
Using Generative Artificial Intelligence in Health Economics and Outcomes Research: A Primer on Techniques and Breakthroughs.

Pharmacoecon Open. 2025-4-29

[8]
Data stewardship and curation practices in AI-based genomics and automated microscopy image analysis for high-throughput screening studies: promoting robust and ethical AI applications.

Hum Genomics. 2025-2-23

[9]
Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Health Care Professionals.

J Med Internet Res. 2024-4-25

[10]
Generative AI in Critical Care Nephrology: Applications and Future Prospects.

Blood Purif. 2024

引用本文的文献

[1]
Reliability of Large Language Model-Based Chatbots Versus Clinicians as Sources of Information on Orthodontics: A Comparative Analysis.

Dent J (Basel). 2025-7-24

[2]
Evaluation of deepseek, gemini, ChatGPT-4o, and perplexity in responding to salivary gland cancer.

BMC Oral Health. 2025-8-23

[3]
The role of generative AI tools in case-based learning and teaching evaluation of medical biochemistry.

BMC Med Educ. 2025-8-22

[4]
Symptom Recognition in Medical Conversations Via multi- Instance Learning and Prompt.

J Med Syst. 2025-8-20

[5]
Assessing the Role of Large Language Models Between ChatGPT and DeepSeek in Asthma Education for Bilingual Individuals: Comparative Study.

JMIR Med Inform. 2025-8-13

[6]
Evaluation of the performance of large language models in endoscopic lumbar surgery: a comparative analysis.

Ann Med Surg (Lond). 2025-6-30

[7]
The Artificial Intelligence-Assisted Diagnosis of Skeletal Dysplasias in Pediatric Patients: A Comparative Benchmark Study of Large Language Models and a Clinical Expert Group.

Genes (Basel). 2025-6-28

[8]
Comparative Analysis of Generative Artificial Intelligence Systems in Solving Clinical Pharmacy Problems: Mixed Methods Study.

JMIR Med Inform. 2025-7-24

[9]
Reshaping transplantation with AI, emerging technologies and xenotransplantation.

Nat Med. 2025-7-14

[10]
Evaluating AI-Generated Patient Education Guides: A Comparative Study of ChatGPT and Deepseek.

Cureus. 2025-6-3

本文引用的文献

[1]
Chinese firm's large language model makes a splash.

Science. 2025-1-17

[2]
How should we test AI for human-level intelligence? OpenAI's o3 electrifies quest.

Nature. 2025-1

[3]
Artificial Intelligence, Data Protection, Privacy, and Doxxing.

Aesthet Surg J. 2025-1-16

[4]
OpenAI o1-Preview vs. ChatGPT in Healthcare: A New Frontier in Medical AI Reasoning.

Cureus. 2024-10-1

[5]
Reference Hallucination Score for Medical Artificial Intelligence Chatbots: Development and Usability Study.

JMIR Med Inform. 2024-7-31

[6]
Transforming Virtual Healthcare: The Potentials of ChatGPT-4omni in Telemedicine.

Cureus. 2024-5-30

[7]
A Call to Address AI "Hallucinations" and How Healthcare Professionals Can Mitigate Their Risks.

Cureus. 2023-9-5

[8]
Integrating ChatGPT in Medical Education: Adapting Curricula to Cultivate Competent Physicians for the AI Era.

Cureus. 2023-8-6

[9]
Creation and Adoption of Large Language Models in Medicine.

JAMA. 2023-9-5

[10]
Artificial Hallucinations in ChatGPT: Implications in Scientific Writing.

Cureus. 2023-2-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索