Suppr超能文献

一种用于增强猴痘病变分类的自适应生成式3D VNet模型:深度学习与增强图像融合的应用

An Adaptive Generative 3D VNet Model for Enhanced Monkeypox Lesion Classification Using Deep Learning and Augmented Image Fusion.

作者信息

Joshi Shivani, Kumar Rajiv, Dwivedi Avinash, Kumar Ashish, Rai Praveen Kumar

机构信息

School of Computer Science & Engineering, Galgotias University, Greater Noida, India.

Department of Computer Science and Engineering, GL Bajaj Institute of Technology and Management, Greater Noida, India.

出版信息

J Imaging Inform Med. 2025 Jul 14. doi: 10.1007/s10278-025-01594-4.

Abstract

As monkeypox is spreading rapidly, the incidence of monkeypox has been increasing in recent times. Therefore, it is very important to detect and diagnose this disease to get effective treatment planning. The prominent aim of this paper is to design an effective monkeypox detection and classification model by utilizing deep learning and classification models. In this study, a novel Adaptive Generative 3D VNet model is presented to effectively classify the monkeypox lesions. Different data augmentation approaches, deep learning, and adaptive fusion are integrated into the proposed model to attain better results in disease classification. The major objective of the proposed model is to mitigate the challenges of limited labeled data by generating synthetic augmented images and combining them with real images for robust classification. The two major components of the proposed system are the Adaptive Generative Network and the 3D VNet. Additional training models are generated by the adaptive generative network through augmentation approaches including cropping, rotation, and flipping, thereby increasing the diversity of the dataset. The 3D VNet processes these images in a volumetric manner to capture spatial relationships within the lesions, improving classification accuracy. The fusion layer then adaptively combines the predictions from the real and augmented data to optimize the overall effectiveness of a model. Key performance metrics including accuracy, precision, sensitivity, specificity, Jaccard Index, Hausdorff distance, and Dice Similarity Coefficient are used to compute the effectiveness of a model. The findings show that the Adaptive Generative 3D VNet model outperforms traditional 2D models by significantly improving the classification accuracy and robustness, especially in the presence of limited labeled data. Therefore, the simulation results demonstrate that the proposed model achieves high accuracy and precision of 98.8% and 98.5%, respectively based on the Monkeypox Skin Lesion Dataset.

摘要

随着猴痘迅速传播,近期猴痘发病率一直在上升。因此,检测和诊断这种疾病对于制定有效的治疗方案非常重要。本文的主要目的是利用深度学习和分类模型设计一种有效的猴痘检测和分类模型。在本研究中,提出了一种新颖的自适应生成3D VNet模型,以有效地对猴痘病变进行分类。将不同的数据增强方法、深度学习和自适应融合集成到所提出的模型中,以在疾病分类中获得更好的结果。所提出模型的主要目标是通过生成合成增强图像并将其与真实图像相结合以进行稳健分类,来缓解标记数据有限的挑战。所提出系统的两个主要组件是自适应生成网络和3D VNet。自适应生成网络通过包括裁剪、旋转和翻转在内的增强方法生成额外的训练模型,从而增加数据集的多样性。3D VNet以体素方式处理这些图像,以捕捉病变内的空间关系,提高分类准确性。然后,融合层自适应地组合来自真实数据和增强数据的预测,以优化模型的整体有效性。使用包括准确率、精确率、灵敏度、特异性、杰卡德指数、豪斯多夫距离和骰子相似系数在内的关键性能指标来计算模型的有效性。研究结果表明,自适应生成3D VNet模型在显著提高分类准确性和稳健性方面优于传统的2D模型,特别是在标记数据有限的情况下。因此模拟结果表明,基于猴痘皮肤病变数据集,所提出的模型分别实现了98.8%和98.5%的高精度和高精确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验