Chen Jiaxin, Liu Rui, Tang Yingqi, Qian Chenggen
Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, State Key Laboratory of Natural Medicines, Nanjing 210009, China.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jul 15;54(4):469-478. doi: 10.3724/zdxbyxb-2024-0651.
Adoptive cell transfer (ACT) shows significant efficacy against hema-tological malignancies but is limited in solid tumors due to poor homing, immunosuppre-ssion, and potential toxicity. Biomaterials spanning from nano- to macroscales-including nanoparticles, microspheres/micropatches, and hydrogels-offer unique advantages for cell engineering, delivery, and modulation of the tumor microenvironment. Specifically, nanoparticles enable gene delivery, artificial antigen-presenting cell engi-neering, and immune microenvironment remodeling. Microspheres/micropatches improve immune cell expansion, targeted activation, and localized retention. Hydrogels enhance ACT via genetic engineering, 3D culture support, and cytokine co-delivery. This review summarizes advances in biomaterial-enhanced ACT, highlighting their potential to improve delivery efficiency, amplify antitumor responses, and reduce toxicity. These insights may accelerate the clinical translation of ACT for solid tumors.
过继性细胞转移(ACT)对血液系统恶性肿瘤显示出显著疗效,但由于归巢能力差、免疫抑制和潜在毒性,在实体瘤治疗中受到限制。从纳米到宏观尺度的生物材料——包括纳米颗粒、微球/微贴片和水凝胶——在细胞工程、递送以及肿瘤微环境调控方面具有独特优势。具体而言,纳米颗粒可实现基因递送、人工抗原呈递细胞工程以及免疫微环境重塑。微球/微贴片可改善免疫细胞扩增、靶向激活和局部滞留。水凝胶通过基因工程、三维培养支持和细胞因子共递送增强ACT。本综述总结了生物材料增强ACT的进展,强调了它们在提高递送效率、增强抗肿瘤反应和降低毒性方面的潜力。这些见解可能会加速ACT在实体瘤治疗中的临床转化。
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025-7-15
Int J Nanomedicine. 2025-8-20
Acta Biomater. 2025-6-15
J Immunother Cancer. 2025-7-23
Front Immunol. 2025-8-12
Front Immunol. 2025-8-1
J Immunother Cancer. 2025-7-25
Biomaterials. 2025-6
J Gene Med. 2024-12
ACS Appl Bio Mater. 2024-5-20