文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过纳米制剂改善缺氧微环境以在小鼠模型中进行有效的T细胞治疗

Improved Hypoxic Microenvironment By Nanoformulation For Effective T Cell Therapy In Mice Model.

作者信息

Feng Xiaoyu, Zhu Hao, Shen Jingwen, Wang Yan, Liu Shutong, Chen Xinjie, Ke Yaohua, Zhang Dinghu, Yu Lixia, Liu Baorui, Liu Qin, Wang Hao, Chu Yanhong

机构信息

Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People's Republic of China.

Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China.

出版信息

Int J Nanomedicine. 2025 Aug 20;20:10073-10087. doi: 10.2147/IJN.S522504. eCollection 2025.


DOI:10.2147/IJN.S522504
PMID:40859952
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12375303/
Abstract

INTRODUCTION: Adoptive cell therapy (ACT) has emerged as a powerful strategy for eliciting tumor regression. However, its efficacy in solid tumors remains limited, primarily due to the immunosuppressive tumor microenvironment (TME). We developed a tumor microenvironment-responsive mesoporous silica nanosphere (MSN) formulation co-loaded with the immunostimulant imiquimod (R837), zinc peroxide (ZnO), and manganese peroxide (MnO) to alleviate hypoxia and enhance dendritic cell (DC)-mediated antitumor immunity. METHODS: The immunostimulatory efficacy of our nanoparticles was evaluated in vitro using DC activation assays and in vivo in an H22 murine hepatocellular carcinoma model. Flow cytometry was employed to assess immune cell populations in tumors and lymph nodes, while immunofluorescence microscopy was used to analyze tumor hypoxia and T cell infiltration. RESULTS: The oxygen-generating MSN formulation effectively alleviated intratumoral hypoxia, promoted DC maturation (CD80CD86), and facilitated effector CD8 T cell infiltration into tumors. In vivo, co-administration of the nanoformulation with ACT led to enhanced tumor suppression and systemic antitumor immune responses without evident toxicity to major organs. CONCLUSION: This oxygen-producing immunomodulatory nanoplatform remodels the immunosuppressive TME and significantly enhances the efficacy of ACT in solid tumors, offering a promising strategy for overcoming current barriers in T cell-based immunotherapy.

摘要

引言:过继性细胞疗法(ACT)已成为一种引发肿瘤消退的有效策略。然而,其在实体瘤中的疗效仍然有限,主要原因是免疫抑制性肿瘤微环境(TME)。我们开发了一种肿瘤微环境响应性介孔二氧化硅纳米球(MSN)制剂,其共负载免疫刺激剂咪喹莫特(R837)、过氧化锌(ZnO)和过氧化锰(MnO),以缓解缺氧并增强树突状细胞(DC)介导的抗肿瘤免疫力。 方法:我们使用DC激活试验在体外评估了纳米颗粒的免疫刺激功效,并在H22小鼠肝细胞癌模型中进行了体内评估。采用流式细胞术评估肿瘤和淋巴结中的免疫细胞群体,同时使用免疫荧光显微镜分析肿瘤缺氧和T细胞浸润情况。 结果:产生氧气的MSN制剂有效缓解了肿瘤内缺氧,促进了DC成熟(CD80CD86),并促进效应性CD8 T细胞浸润到肿瘤中。在体内,纳米制剂与ACT联合给药导致增强的肿瘤抑制和全身抗肿瘤免疫反应,而对主要器官无明显毒性。 结论:这种产生氧气的免疫调节纳米平台重塑了免疫抑制性TME,并显著提高了ACT在实体瘤中的疗效,为克服当前基于T细胞的免疫疗法中的障碍提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/032216ad9574/IJN-20-10073-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/cf1cab2bc21f/IJN-20-10073-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/867203b9a328/IJN-20-10073-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/d6b20c574bc1/IJN-20-10073-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/bb040cb8d0d0/IJN-20-10073-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/971cf38c7817/IJN-20-10073-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/6a4a790f3d25/IJN-20-10073-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/032216ad9574/IJN-20-10073-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/cf1cab2bc21f/IJN-20-10073-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/867203b9a328/IJN-20-10073-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/d6b20c574bc1/IJN-20-10073-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/bb040cb8d0d0/IJN-20-10073-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/971cf38c7817/IJN-20-10073-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/6a4a790f3d25/IJN-20-10073-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd1/12375303/032216ad9574/IJN-20-10073-g0007.jpg

相似文献

[1]
Improved Hypoxic Microenvironment By Nanoformulation For Effective T Cell Therapy In Mice Model.

Int J Nanomedicine. 2025-8-20

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
A biomimetic nanoplatform mediates hypoxia-adenosine axis disruption and PD-L1 knockout for enhanced MRI-guided chemodynamic-immunotherapy.

Acta Biomater. 2025-6-16

[4]
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.

Front Immunol. 2025-7-24

[5]
Evidence of immunogenic cell death (ICD) and ICD-dependent dendritic cell activation induced by extracorporeal photopheresis in patients with leukaemic forms of cutaneous T-cell lymphoma.

Br J Dermatol. 2025-7-17

[6]
Sexual Harassment and Prevention Training

2025-1

[7]
Oncolytic reovirus enhances the effect of CEA immunotherapy when combined with PD1-PDL1 inhibitor in a colorectal cancer model.

Immunotherapy. 2025-4

[8]
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.

Autism Adulthood. 2025-5-28

[9]
DS-Modified Paeoniflorin pH-Responsive Lipid-Polymer Hybrid Nanoparticles for Targeted Macrophage Polarization in a Rat Model of Rheumatoid Arthritis.

Int J Nanomedicine. 2025-7-12

[10]
Mesoporous silica nanoparticles loaded Au nanodots: a self-amplifying immunotherapeutic depot for photothermal immunotherapy.

Front Immunol. 2025-6-18

本文引用的文献

[1]
PPS-TLR7/8 agonist nanoparticles equip robust anticancer immunity by selectively prolonged activation of dendritic cells.

Biomaterials. 2025-5

[2]
Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors.

Semin Immunopathol. 2024-7-25

[3]
Adoptive T cell therapy for solid tumors: current landscape and future challenges.

Front Immunol. 2024

[4]
Clinical application of cytokine-induced killer (CIK) cell therapy in colorectal cancer: Current strategies and future challenges.

Cancer Treat Rev. 2024-1

[5]
Smart nanoparticles for cancer therapy.

Signal Transduct Target Ther. 2023-11-3

[6]
Versatile biomimetic nanomedicine for treating cancer and inflammation disease.

Med Rev (2021). 2023-4-7

[7]
Nanotechnological strategies to increase the oxygen content of the tumor.

Front Pharmacol. 2023-3-9

[8]
Clinical adoptive regulatory T Cell therapy: State of the art, challenges, and prospective.

Front Cell Dev Biol. 2023-1-30

[9]
TCR-engineered T cell therapy in solid tumors: State of the art and perspectives.

Sci Adv. 2023-2-15

[10]
Surgically Derived Cancer Cell Membrane-Coated R837-Loaded Poly(2-Oxazoline) Nanoparticles for Prostate Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2023-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索