Suppr超能文献

基于仿生透明质酸支架的导电MXene基微网的3D打印用于神经修复应用,可引导并增强电刺激。

3D-Printing of Electroconductive MXene-Based Micro-Meshes in a Biomimetic Hyaluronic Acid-Based Scaffold Directs and Enhances Electrical Stimulation for Neural Repair Applications.

作者信息

Woods Ian, Spurling Dahnan, Sunil Sandra, Marie O'Callaghan Anne, Maughan Jack, Gutierrez-Gonzalez Javier, McGuire Tara K, Leahy Liam, Dervan Adrian, Nicolosi Valeria, O'Brien Fergal J

机构信息

Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephen's Green, Dublin 2, Dublin, D02YN77, Ireland.

Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI, 123 St Stephen's Green, Dublin 2, Dublin, D02YN77, Ireland.

出版信息

Adv Sci (Weinh). 2025 Jul 15:e03454. doi: 10.1002/advs.202503454.

Abstract

No effective treatments are currently available for central nervous system neurotrauma although recent advances in electrical stimulation suggest some promise in neural tissue repair. It is hypothesized that structured integration of an electroconductive biomaterial into a tissue engineering scaffold can enhance electroactive signaling for neural regeneration. Electroconductive 2D TiCT MXene nanosheets are synthesized from MAX-phase powder, demonstrating excellent biocompatibility with neurons, astrocytes and microglia. To achieve spatially-controlled distribution of these MXenes, melt-electrowriting is used to 3D-print highly-organized PCL micro-meshes with varying fiber spacings (low-, medium-, and high-density), which are functionalized with MXenes to provide highly-tunable electroconductive properties (0.081 ± 0.053-18.87 ± 2.94 S/m). Embedding these electroconductive micro-meshes within a neurotrophic, immunomodulatory hyaluronic acid-based extracellular matrix (ECM) produced a soft, growth-supportive MXene-ECM composite scaffold. Electrical stimulation of neurons seeded on these scaffolds promoted neurite outgrowth, influenced by fiber spacing in the micro-mesh. In a multicellular model of cell behavior, neurospheres stimulated for 7 days on high-density MXene-ECM scaffolds exhibited significantly increased axonal extension and neuronal differentiation, compared to low-density scaffolds and MXene-free controls. The results demonstrate that spatial-organization of electroconductive materials in a neurotrophic scaffold can enhance repair-critical responses to electrical stimulation and that these biomimetic MXene-ECM scaffolds offer a promising new approach to neurotrauma repair.

摘要

目前尚无针对中枢神经系统神经创伤的有效治疗方法,尽管电刺激方面的最新进展显示在神经组织修复方面有一些希望。据推测,将导电生物材料结构化整合到组织工程支架中可以增强神经再生的电活性信号传导。从MAX相粉末合成了导电二维TiCT MXene纳米片,证明其与神经元、星形胶质细胞和小胶质细胞具有优异的生物相容性。为了实现这些MXene的空间控制分布,采用熔体电写技术3D打印具有不同纤维间距(低密度、中密度和高密度)的高度有序的PCL微网,并用MXene对其进行功能化处理,以提供高度可调的导电性能(0.081±0.053 - 18.87±2.94 S/m)。将这些导电微网嵌入基于神经营养、免疫调节透明质酸的细胞外基质(ECM)中,制成了一种柔软的、支持生长的MXene-ECM复合支架。对接种在这些支架上的神经元进行电刺激可促进神经突生长,这受到微网中纤维间距的影响。在细胞行为的多细胞模型中,与低密度支架和无MXene的对照相比,在高密度MXene-ECM支架上刺激7天的神经球表现出轴突延伸和神经元分化显著增加。结果表明,神经营养支架中导电材料的空间组织可以增强对电刺激的关键修复反应,并且这些仿生MXene-ECM支架为神经创伤修复提供了一种有前景的新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验