van Vlimmeren Anne E, Tang Lauren C, Jiang Ziyuan, Iyer Abhishek, Voleti Rashmi, Krismer Konstantin, Gaublomme Jellert T, Jovanovic Marko, Shah Neel H
Department of Chemistry, Columbia University, New York, NY 10027.
Department of Biological Sciences, Columbia University, New York, NY 10027.
bioRxiv. 2025 Mar 21:2025.02.26.640373. doi: 10.1101/2025.02.26.640373.
Missense mutations in , which encodes the protein tyrosine phosphatase SHP2, are common in several developmental disorders and cancers. While many mutations disrupt auto-inhibition and hyperactivate SHP2, several do not enhance catalytic activity. Both activating and non-activating mutations could potentially drive pathogenic signaling by altering SHP2 interactions or localization. We employed proximity-labeling proteomics to map the interaction networks of wild-type SHP2, ten clinically-relevant mutants, and SHP2 bound to an inhibitor that stabilizes its auto-inhibited state. Our analyses revealed mutation- and inhibitor-dependent alterations in the SHP2 interactome, with several mutations also changing localization. Some mutants had increased mitochondrial localization and impacted mitochondrial function. This study provides a resource for exploring SHP2 signaling and offers new insights into the molecular basis of SHP2-driven diseases. Furthermore, this work highlights the capacity for proximity-labeling proteomics to detect missense-mutation-dependent changes in protein interactions and localization.
编码蛋白酪氨酸磷酸酶SHP2的基因发生错义突变,在多种发育障碍和癌症中很常见。虽然许多突变会破坏自身抑制并使SHP2过度激活,但也有一些突变不会增强催化活性。激活和非激活突变都可能通过改变SHP2的相互作用或定位来驱动致病信号传导。我们采用邻近标记蛋白质组学来绘制野生型SHP2、十个临床相关突变体以及与稳定其自身抑制状态的抑制剂结合的SHP2的相互作用网络。我们的分析揭示了SHP2相互作用组中依赖于突变和抑制剂的变化,一些突变还改变了定位。一些突变体增加了线粒体定位并影响了线粒体功能。这项研究为探索SHP2信号传导提供了资源,并为SHP2驱动疾病的分子基础提供了新的见解。此外,这项工作突出了邻近标记蛋白质组学检测蛋白质相互作用和定位中错义突变依赖性变化的能力。