Department of Chemistry, Columbia University, New York, NY 10027.
Department of Biological Sciences, Columbia University, New York, NY 10027.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2407159121. doi: 10.1073/pnas.2407159121. Epub 2024 Jul 16.
Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.
Src 同源物 2 结构域含酪氨酸磷酸酶结构域蛋白酪氨酸磷酸酶-2(SHP2)中的突变与多种人类疾病有关。SHP2 中的大多数突变通过破坏其磷酸酶结构域和 N 端 SH2(磷酸酪氨酸识别)结构域之间的自动抑制相互作用,增加其基础催化活性。相比之下,一些位于 N 或 C 端 SH2 结构域配体结合口袋中的疾病相关突变不会增加基础活性,并且可能通过替代机制发挥其致病性。我们缺乏对这些 SH2 突变如何影响 SHP2 结构、活性和信号转导的分子理解。在这里,我们通过高通量生化筛选、生物物理和生化测量以及分子动力学模拟相结合,对 SHP2 的五个 SH2 结构域配体结合口袋突变体进行了表征。我们表明,虽然这些突变中的一些改变了与磷酸化位点的结合亲和力,但 N-SH2 结构域中的 T42A 突变是独特的,因为它还显著改变了配体结合特异性,尽管距离 SH2 结构域的特异性决定区域 8 到 10Å。这种突变通过重塑磷酸酪氨酸结合口袋,改变配体上磷酸酪氨酸和周围残基的结合方式,对序列特异性产生影响。这种改变的特异性的功能后果是,T42A 突变体对一组激活配体具有偏向敏感性,并增强下游信号转导。我们的研究强调了一种与疾病相关的突变的作用机制的一个例子,其特征是蛋白质-蛋白质相互作用特异性的改变,从而改变酶的激活。