Lv Shuangshuang, Ye Huan, Li Yuan, Zhang Jian
Clinical Laboratory, Dongyang People's Hospital, Dongyang, Zhejiang, China.
Clinical Laboratory, The Second People's Hospital of Yuhuan City, Yuhuan, Zhejiang, China.
Front Digit Health. 2025 Jun 30;7:1603314. doi: 10.3389/fdgth.2025.1603314. eCollection 2025.
In this study, we developed and validated a logistic regression-clustering joint model to: (1) quantify multistage workflow bottlenecks (collection/transport/reception) in urine culture pre-TAT prolongation (>115 min); and (2) assess the efficacy of targeted interventions derived from model-derived insights.
Using complete workflow data obtained from 1,343 urine culture specimens (January 2024-March 2024) collected at a tertiary hospital, we integrated binary logistic regression analysis with K-means clustering to quantify delay patterns. The analyzed variables included collection time, ward type, personnel roles, and patient demographics. Post-intervention data (May 2024-July 2024, ** = 1,456) was also analyzed to assess the impact.
Analysis of the critical risk factors revealed that specimens collected between 04:00-05:59/10:00-11:59 had 142.92-fold higher delay odds (95% CI: 58.81-347.37). Those collected on SICU/ICU wards showed 9.98-fold higher risk (95% CI: 5.05-19.72) than general wards. Regarding intervention efficacy, pre-TAT overtime rates decreased by 58.6% (13.48% → 7.55%, < 0.01). Contamination rate decreased by 59.8% (5.67% → 2.28%, < 0.01). The median pre-TAT decreased by 15.9% (44 → 37 min, < 0.01).
The joint model effectively identified workflow bottlenecks. Targeted interventions (dynamic transport scheduling, standardized training, and IoT alert systems) significantly optimized pre-TAT and specimen quality, providing a framework for improving clinical laboratory processes.
在本研究中,我们开发并验证了一种逻辑回归-聚类联合模型,以:(1)量化尿培养标本检验周转时间(TAT)延长(>115分钟)之前多阶段工作流程的瓶颈(采集/运输/接收);(2)评估从模型得出的见解中获得的针对性干预措施的效果。
利用从一家三级医院收集的1343份尿培养标本(2024年1月至2024年3月)的完整工作流程数据,我们将二元逻辑回归分析与K均值聚类相结合,以量化延迟模式。分析的变量包括采集时间、病房类型、人员角色和患者人口统计学信息。还对干预后的数据(2024年5月至2024年7月,n = 1456)进行了分析,以评估影响。
对关键风险因素的分析表明,在04:00 - 05:59/10:00 - 11:59之间采集的标本延迟几率高142.92倍(95%置信区间:58.81 - 347.37)。在外科重症监护病房(SICU)/重症监护病房(ICU)采集的标本显示出的风险比普通病房高9.98倍(95%置信区间:5.05 - 19.72)。关于干预效果,TAT超时率下降了58.6%(13.48% → 7.55%,P < 0.01)。污染率下降了59.8%(5.67% → 2.28%,P < 0.01)。TAT中位数下降了15.9%(44 → 37分钟,P < 0.01)。
联合模型有效地识别了工作流程瓶颈。针对性干预措施(动态运输调度、标准化培训和物联网警报系统)显著优化了TAT和标本质量,为改善临床实验室流程提供了一个框架。