文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于预测肾细胞癌脑转移患者生存情况的新型列线图:基于监测、流行病学和最终结果(SEER)数据库的分析

A novel nomogram for survival prediction in renal cell carcinoma patients with brain metastases: an analysis of the SEER database.

作者信息

Wang Fei, Wang Xihao, Feng Zhigang, Li Jun, Xu Hailiang, Lu Hengming, Wang Lianqu, Li Zhihui

机构信息

Department of Reproductive Medicine, Central Hospital of Zhumadian, Henan, China.

Department of Urology, The First Affiliated Hospital of Henan University, Kaifeng, China.

出版信息

Front Immunol. 2025 Jun 30;16:1572580. doi: 10.3389/fimmu.2025.1572580. eCollection 2025.


DOI:10.3389/fimmu.2025.1572580
PMID:40661946
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12256520/
Abstract

BACKGROUND: Existing research on the development of prognostic models for renal cell carcinoma (RCC) patients with brain metastases (BM) remains limited. This study aimed to develop a prognostic prediction model for RCC patients with BM and to identify critical factors influencing clinical outcomes. METHODS: Patients diagnosed with BM between 2010 and 2019 were identified and extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Potential risk factors were initially screened applying the eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) machine learning algorithms. Subsequently, multivariate COX regression analysis was performed to identify independent risk factors for constructing the predictive nomogram. Nomogram performance was comprehensively evaluated based on Harrell's concordance index (C-index), receiver operating characteristic (ROC) curve analysis, calibration plots, and decision curve analysis (DCA). The SHapley Additive exPlanations (SHAP) method was employed to demonstrate the ranking of feature importance affecting patient prognosis at different time points. Moreover, we conducted propensity score matching (PSM) and Kaplan-Meier (K-M) survival analysis to compare clinical outcomes between surgical and non-surgical treatment subgroups. RESULTS: In total, 982 patients were assigned to the training cohort and 420 to the validation cohort. The constructed nomogram included four clinical variables: histologic type, T stage, N stage, surgery and chemotherapy. The AUC, C-index, calibration curves, and DCA curves showed excellent performance of the nomogram. In addition, the SHAP values indicated that surgical treatment was the most important prognostic risk factor for OS at 6-months, 1-year, 2-years, and 3-years. After further balancing the baseline characteristics between the surgical and non-surgical groups using PSM, we observed that patients with BM who underwent surgical intervention showed significantly better survival outcomes across all subgroups compared to non-surgical patients, though unmeasured confounders may contribute to this association. CONCLUSION: We developed a novel nomogram for predicting prognostic factors in RCC patients with BM, offering a valuable tool to support accurate clinical decision-making. Our research also confirmed that surgical intervention was significantly associated with improved survival outcomes for patients with BM.

摘要

背景:关于肾细胞癌(RCC)脑转移(BM)患者预后模型开发的现有研究仍然有限。本研究旨在开发一种针对RCC合并BM患者的预后预测模型,并确定影响临床结局的关键因素。 方法:从监测、流行病学和最终结果(SEER)数据库中识别并提取2010年至2019年间诊断为BM的患者。最初应用极端梯度提升(XGBoost)和随机森林(RF)机器学习算法筛选潜在风险因素。随后,进行多变量COX回归分析以确定构建预测列线图的独立风险因素。基于Harrell一致性指数(C指数)、受试者工作特征(ROC)曲线分析、校准图和决策曲线分析(DCA)对列线图性能进行全面评估。采用SHapley加性解释(SHAP)方法展示不同时间点影响患者预后的特征重要性排名。此外,我们进行了倾向评分匹配(PSM)和Kaplan-Meier(K-M)生存分析,以比较手术和非手术治疗亚组之间的临床结局。 结果:总共982例患者被分配到训练队列,420例被分配到验证队列。构建的列线图包括四个临床变量:组织学类型、T分期、N分期、手术和化疗。AUC、C指数、校准曲线和DCA曲线显示列线图具有优异的性能。此外,SHAP值表明手术治疗是6个月、1年、2年和3年总生存期最重要的预后风险因素。在使用PSM进一步平衡手术组和非手术组之间的基线特征后,我们观察到与非手术患者相比,接受手术干预的BM患者在所有亚组中的生存结局均显著更好,尽管未测量的混杂因素可能导致这种关联。 结论:我们开发了一种用于预测RCC合并BM患者预后因素的新型列线图,为支持准确的临床决策提供了有价值的工具。我们的研究还证实,手术干预与BM患者生存结局的改善显著相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/d2d15c3b91cb/fimmu-16-1572580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/81ba9ece8623/fimmu-16-1572580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/a64eb5352fdd/fimmu-16-1572580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/b7ae80712691/fimmu-16-1572580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/80aae509e7be/fimmu-16-1572580-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/7562c90468d2/fimmu-16-1572580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/9c4f9fc5258c/fimmu-16-1572580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/4755aef2e1e6/fimmu-16-1572580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/bfd70f92f7ee/fimmu-16-1572580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/d2d15c3b91cb/fimmu-16-1572580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/81ba9ece8623/fimmu-16-1572580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/a64eb5352fdd/fimmu-16-1572580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/b7ae80712691/fimmu-16-1572580-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/80aae509e7be/fimmu-16-1572580-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/7562c90468d2/fimmu-16-1572580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/9c4f9fc5258c/fimmu-16-1572580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/4755aef2e1e6/fimmu-16-1572580-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/bfd70f92f7ee/fimmu-16-1572580-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c95/12256520/d2d15c3b91cb/fimmu-16-1572580-g009.jpg

相似文献

[1]
A novel nomogram for survival prediction in renal cell carcinoma patients with brain metastases: an analysis of the SEER database.

Front Immunol. 2025-6-30

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Individualized Prediction of Overall Survival Time for Patients with Primary Intramedullary Spinal Cord Astrocytoma: A Population-Based Study.

World Neurosurg. 2025-1

[4]
Development and validation of nomograms for predicting survival of locally advanced rectosigmoid junction cancer patients: a SEER database analysis.

Transl Cancer Res. 2025-5-30

[5]
A SEER prognostic nomogram analysis for extensive-stage small cell lung cancer: comparing the immune checkpoint inhibitors (ICIs) and non-ICIs eras.

J Thorac Dis. 2025-5-30

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Interpretable machine learning models for survival prediction in prostate cancer bone metastases.

Sci Rep. 2025-7-6

[8]
Establishment of a prognostic nomogram and risk stratification system for patients with distant-metastatic hepatocellular carcinoma: A population-based study.

Medicine (Baltimore). 2025-6-13

[9]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[10]
Identification of Patients with Early-Stage Hepatocellular Carcinoma Benefiting from Neoadjuvant Chemotherapy-A SEER-Based Study.

J Gastrointest Cancer. 2025-6-29

本文引用的文献

[1]
Development and validation of a prediction model for the prognosis of renal cell carcinoma with liver metastases: a population-based cohort study.

Front Med (Lausanne). 2024-12-3

[2]
Development and validation of an interpretable machine learning model for predicting the risk of distant metastasis in papillary thyroid cancer: a multicenter study.

EClinicalMedicine. 2024-10-30

[3]
Radiomic features of primary retroperitoneal sarcomas: a prognostic study.

Eur J Cancer. 2024-12

[4]
Construction of machine learning diagnostic models for cardiovascular pan-disease based on blood routine and biochemical detection data.

Cardiovasc Diabetol. 2024-9-28

[5]
Immune checkpoint inhibitors as subsequent treatment in older adults with non-small cell lung cancer and synchronous brain metastases.

Transl Lung Cancer Res. 2024-7-30

[6]
Machine Learning-based Framework Develops a Tumor Thrombus Coagulation Signature in Multicenter Cohorts for Renal Cancer.

Int J Biol Sci. 2024

[7]
Comparison of long-term survival of neoadjuvant therapy plus surgery versus upfront surgery and the role of adjuvant therapy for T1b-2N0-1 esophageal cancer: a population study of the SEER database and Chinese cohort.

Int J Surg. 2025-1-1

[8]
Cytoreductive nephrectomy in metastatic renal cell carcinoma.

Cochrane Database Syst Rev. 2024-6-7

[9]
Real-World Impact of Upfront Cytoreductive Nephrectomy in Metastatic Non-Clear Cell Renal Cell Carcinoma Treated with First-Line Immunotherapy Combinations or Tyrosine Kinase Inhibitors (A Sub-Analysis from the ARON-1 Retrospective Study).

Target Oncol. 2024-7

[10]
Application of interpretable machine learning algorithms to predict distant metastasis in ovarian clear cell carcinoma.

Cancer Med. 2024-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索