Suppr超能文献

存在中间混杂因素时的自然效应:以自然效应与干预效应之间的关系为重点的实用估计策略评估

Natural Effects in the Presence of an Intermediate Confounder: Evaluation of Pragmatic Estimation Strategies With an Emphasis on the Relationship Between Natural and Interventional Effects.

作者信息

Gervais Jesse, Lefebvre Geneviève, Moodie Erica E M

机构信息

Department of Mathematics, Université du Québec à Montréal, Québec, Canada.

Department of Epidemiology, Biostatistics, & Occupational Health, McGill University, Québec, Canada.

出版信息

Stat Med. 2025 Jul;44(15-17):e70038. doi: 10.1002/sim.70038.

Abstract

Mediation analysis using the so-called natural effects is an essential tool to uncover causal pathways between an exposure and an outcome. However, natural effects are not generally identified in the presence of an intermediate confounder ( ), a situation that arguably arises frequently in practice. Three pragmatic approaches can be used to estimate natural effects when such a confounder is present: Natural effects estimators that omit , natural effects estimators that consider as a pre-exposure confounder, or interventional effects estimators. Interventional effects are analogous to natural effects, but remain identified when is present. The goal of this study was two-fold: (1) to assess the extent to which natural and interventional estimands differ under a variety of data-generating mechanisms with intermediate confounding and (2) using simulations, to investigate the corresponding performance of the three aforementioned strategies to estimate natural effects. In the continuous outcome case, using interventional effects estimators was found to be a better analytic strategy for estimating natural effects than using standard natural effects estimators when the interaction term between and in the outcome model was null or moderate in comparison to the other parameters. However, the performance of interventional effects declined as the - interaction was increased. In the binary outcome case, the three estimation strategies yielded more similar results than in the continuous outcome case. The difference between the three analytic strategies is illustrated using data from the World Value Survey.

摘要

使用所谓的自然效应进行中介分析是揭示暴露与结局之间因果路径的重要工具。然而,在存在中间混杂因素( )的情况下,自然效应通常无法识别,而这种情况在实际中可能经常出现。当存在这样的混杂因素时,可以使用三种实用方法来估计自然效应:省略 的自然效应估计量、将 视为暴露前混杂因素的自然效应估计量或干预效应估计量。干预效应类似于自然效应,但在存在 时仍然可以识别。本研究的目标有两个:(1)评估在各种存在中间混杂的数据生成机制下,自然估计量和干预估计量的差异程度;(2)通过模拟研究上述三种估计自然效应策略的相应性能。在连续结局的情况下,当结局模型中 与 之间的交互项相对于其他参数为零或适中时,发现使用干预效应估计量比使用标准自然效应估计量是估计自然效应更好的分析策略。然而,随着 - 交互作用的增加,干预效应的性能下降。在二元结局的情况下,三种估计策略产生的结果比在连续结局情况下更相似。使用来自世界价值观调查的数据说明了这三种分析策略之间的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7db5/12261401/c1f376165d34/SIM-44-0-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验