Maurya Vikas, Singh Raja, Kutmutia Shruti, Chaudhary Bibha, Bhattacharjee Souvik, Tandon Vibha
Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA.
Microbiol Spectr. 2025 Aug 5;13(8):e0297424. doi: 10.1128/spectrum.02974-24. Epub 2025 Jul 15.
Emerging resistance to current antibiotics is a global threat to human health. Therefore, comprehending the mechanism behind antibiotic resistance holds paramount importance. In the pursuit of finding new antibacterial agents, our group has developed a small molecule, PPEF (2'-(4-ethoxyphenyl)-5-(4-propylpiperazin-1-yl)-1H,1'H-2,5'-bibenzo(d)imidazole), having bisbenzimidazole as a pharmacophore, targeting bacterial type IA topoisomerase, a novel drug target in bacteria. We examined the emergence of mutations leading to PPEF resistance in laboratory-evolved strains. The growth curve revealed that 25923 PPEF-resistant (SA-PR) and methicillin-resistant 43300 PPEF-resistant (MRSA-PR) attained stationary phase earlier than their respective reference strains. RNA sequencing analysis revealed that (ATP synthase gene) was downregulated by 2 log-fold in both SA-PR and MRSA-PR strains, whereas there was 10 to 13 log-fold downregulation of (methicillin resistance-inducing gene), (bleomycin resistance-inducing gene), (beta-lactamase), (penicillin-binding protein gene), (rRNA adenine methyltransferase gene), and (potassium-transporting ATPase) in the MRSA-PR strain. Quantitative reverse-transcriptase PCR data confirmed these results. Additionally, MRSA-PR showed a 5 log-fold upregulation of and a 9 log-fold downregulation of , indicating increased genomic variability and stress adaptation contributing to resistance. Genomic sequencing revealed deletions of resistance genes, including , , , and in MRSA-PR, resulting in a gain in resistance and a diminishing returns epistasis pattern in PPEF-evolved strains. This led to the development of an evolved MRSA-PR strain susceptible to oxacillin, ciprofloxacin, gentamicin, and imipenem. Our findings indicate that adaptation to PPEF has increased antibiotic susceptibility, thereby changing the clinical outcomes of infections.IMPORTANCEThis study investigates how bacteria, including methicillin-resistant (MRSA) strain, develop resistance to a new candidate antibacterial compound, PPEF (2'-(4-ethoxyphenyl)-5-(4-propylpiperazin-1-yl)-1H,1'H-2,5'-bibenzo(d)imidazole). The research found that resistant strains grew slower and showed significant changes in the activity of genes related to antibiotic resistance. Some resistance genes were deleted in the resistant MRSA strain, making it more sensitive to other antibiotics like oxacillin and ciprofloxacin. These findings highlight how resistance to PPEF leads to increased sensitivity to conventional antibiotics. This suggests that developing combination therapies of PPEF with other antibiotics could optimize treatment regimens and slow resistance evolution. This study also indicates that the antibiotic regimens could be designed to force resistant bacteria into evolutionary trade-offs, where they lose resistance to widely used antibiotics while gaining resistance to a new compound like PPEF.
目前抗生素出现的耐药性对人类健康构成了全球性威胁。因此,了解抗生素耐药背后的机制至关重要。在寻找新型抗菌剂的过程中,我们团队开发了一种小分子化合物PPEF(2'-(4-乙氧基苯基)-5-(4-丙基哌嗪-1-基)-1H,1'H-2,5'-联苯并(d)咪唑),它以双苯并咪唑作为药效基团,靶向细菌IA型拓扑异构酶,这是一种细菌中的新型药物靶点。我们研究了实验室进化菌株中导致PPEF耐药性的突变的出现情况。生长曲线显示,25923株PPEF耐药(SA-PR)和43300株耐甲氧西林PPEF耐药(MRSA-PR)菌株比各自的参考菌株更早进入稳定期。RNA测序分析表明,(ATP合酶基因)在SA-PR和MRSA-PR菌株中均下调了2个对数倍,而在MRSA-PR菌株中,(耐甲氧西林诱导基因)、(博来霉素耐药诱导基因)、(β-内酰胺酶)、(青霉素结合蛋白基因)、(rRNA腺嘌呤甲基转移酶基因)和(钾转运ATP酶)下调了10至13个对数倍。定量逆转录酶PCR数据证实了这些结果。此外, MRSA-PR显示上调了5个对数倍,下调了9个对数倍,表明基因组变异性增加和应激适应导致了耐药性。基因组测序显示MRSA-PR中耐药基因缺失,包括、、和,导致耐药性增加以及PPEF进化菌株中出现收益递减的上位性模式。这导致了一种对苯唑西林、环丙沙星、庆大霉素和亚胺培南敏感的进化型MRSA-PR菌株的产生。我们的研究结果表明,对PPEF的适应增加了抗生素敏感性,从而改变了感染的临床结果。重要性本研究调查了包括耐甲氧西林(MRSA)菌株在内的细菌如何对一种新型候选抗菌化合物PPEF(2'-(4-乙氧基苯基)-5-(4-丙基哌嗪-1-基)-1H,1'H-2,5'-联苯并(d)咪唑)产生耐药性。研究发现,耐药菌株生长较慢,与抗生素耐药相关的基因活性发生了显著变化。耐药的MRSA菌株中一些耐药基因被删除,使其对苯唑西林和环丙沙星等其他抗生素更敏感。这些发现突出了对PPEF的耐药性如何导致对传统抗生素的敏感性增加。这表明开发PPEF与其他抗生素的联合疗法可以优化治疗方案并减缓耐药性的演变。这项研究还表明,可以设计抗生素方案迫使耐药细菌进行进化权衡,即它们在对PPEF等新化合物产生耐药性的同时,失去对广泛使用的抗生素的耐药性。