Mahmud A K M Firoj, Delhomme Nicolas, Nandi Soumyadeep, Fällman Maria
Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, Sweden.
Bioinformatics. 2021 Apr 9;37(1):126-128. doi: 10.1093/bioinformatics/btaa1063.
Since its introduction, RNA-Seq technology has been used extensively in studies of pathogenic bacteria to identify and quantify differences in gene expression across multiple samples from bacteria exposed to different conditions. With some exceptions, tools for studying gene expression, determination of differential gene expression, downstream pathway analysis and normalization of data collected in extreme biological conditions is still lacking. Here, we describe ProkSeq, a user-friendly, fully automated RNA-Seq data analysis pipeline designed for prokaryotes. ProkSeq provides a wide variety of options for analysing differential expression, normalizing expression data and visualizing data and results.
ProkSeq is implemented in Python and is published under the MIT source license. The pipeline is available as a Docker container https://hub.docker.com/repository/docker/snandids/prokseq-v2.0, or can be used through Anaconda: https://anaconda.org/snandiDS/prokseq. The code is available on Github: https://github.com/snandiDS/prokseq and a detailed user documentation, including a manual and tutorial can be found at https://prokseqV20.readthedocs.io.
Supplementary data are available at Bioinformatics online.
自引入以来,RNA测序技术已广泛应用于病原菌研究,以识别和量化来自暴露于不同条件下的细菌的多个样本间基因表达的差异。除了一些例外情况,用于研究极端生物学条件下收集的数据的基因表达、差异基因表达测定、下游通路分析和数据归一化的工具仍然缺乏。在此,我们描述了ProkSeq,这是一种为原核生物设计的用户友好型、全自动RNA测序数据分析流程。ProkSeq为分析差异表达、标准化表达数据以及可视化数据和结果提供了多种选项。
ProkSeq用Python实现,并根据麻省理工学院开源许可发布。该流程可作为Docker容器获取,网址为https://hub.docker.com/repository/docker/snandids/prokseq-v2.0,也可通过Anaconda使用:https://anaconda.org/snandiDS/prokseq。代码可在Github上获取:https://github.com/snandiDS/prokseq,详细的用户文档,包括手册和教程,可在https://prokseqV20.readthedocs.io找到。
补充数据可在《生物信息学》在线获取。