Kamaleddin Mohammad Amin
Temerty Centre for Artificial Intelligence Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
Proc Biol Sci. 2025 Jul;292(2051):20250687. doi: 10.1098/rspb.2025.0687. Epub 2025 Jul 16.
Neurons and their subcellular compartments exhibit distinct forms of excitability. In 1948, Alan Hodgkin described different classes of neuronal excitability, each characterized by unique spiking responses to a constant stimulus. Despite these early insights, the mechanisms by which membrane properties influence spike initiation and excitability remain poorly understood. This review explores the nonlinear dynamics underlying spike initiation across excitability classes, emphasizing how these differences contribute to the neural encoding and processing of diverse information. Within a single neuron, compartments such as the soma, axon initial segment (AIS), and axon can exhibit functionally distinct excitability profiles due to differences in ion channel expression and membrane properties. For instance, the biophysical properties of myelinated axons, particularly the expression and distribution of voltage-gated potassium (Kv1) channels, play a key role in maintaining the directional fidelity of action potential propagation by facilitating orthodromic transmission and suppressing antidromic activity. These compartment-specific dynamics underscore the intricate design of neural systems to maintain the precision and efficiency of neural signalling. Moreover, perturbations in excitability are implicated in various neurological disorders, including epilepsy and chronic pain, highlighting the importance of maintaining physiological excitability profiles. By exploring these mechanisms, this review aims to provide insight into how alterations in membrane biophysics may inform future therapeutic strategies targeting excitability-related pathologies.
神经元及其亚细胞区室表现出不同形式的兴奋性。1948年,艾伦·霍奇金描述了不同类型的神经元兴奋性,每种类型都以对恒定刺激的独特放电反应为特征。尽管有这些早期的见解,但膜特性影响动作电位起始和兴奋性的机制仍知之甚少。本综述探讨了不同兴奋性类别中动作电位起始背后的非线性动力学,强调了这些差异如何促进神经对各种信息的编码和处理。在单个神经元内,由于离子通道表达和膜特性的差异,诸如胞体、轴突起始段(AIS)和轴突等区室可表现出功能上不同的兴奋性特征。例如,有髓轴突的生物物理特性,特别是电压门控钾(Kv1)通道的表达和分布,通过促进顺向传导和抑制逆向活动,在维持动作电位传播的方向保真度方面发挥关键作用。这些区室特异性动力学强调了神经系统为维持神经信号传递的精确性和效率而进行的复杂设计。此外,兴奋性的扰动与包括癫痫和慢性疼痛在内的各种神经系统疾病有关,突出了维持生理兴奋性特征的重要性。通过探索这些机制,本综述旨在深入了解膜生物物理学的改变如何为未来针对与兴奋性相关疾病的治疗策略提供信息。