Suppr超能文献

利用计算语言学和机器学习检测青少年心理健康障碍的超高风险。

Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths.

作者信息

Kho Jordon Junyang, Song Shangzheng, Tan Samuel Ming Xuan, Fitriyah Nur Hikmah, Lokadjaja Matheus Calvin, Yee Jie Yin, Yang Zixu, Chen Eric Yu Hai, Lee Jimmy, Goh Wilson Wen Bin

机构信息

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.

出版信息

Schizophrenia (Heidelb). 2025 Jul 15;11(1):98. doi: 10.1038/s41537-025-00649-3.

Abstract

Mental illnesses often manifest through behavioral changes, with speech serving as a key medium for expressing thoughts and emotions. The use of computational linguistics on speech data in mental illnesses is a promising approach to uncover objective biomarkers for the early detection of mental illnesses. This study analyzed speech transcripts from 80 youths at ultra-high risk of psychosis (UHR) and 329 healthy controls, examining text features such as sentiment variability, cohesion, lexical sophistication, morphology, syntactic sophistication, and lexical diversity. Factor analysis revealed five key linguistic themes: Sentiment Intensity and Variability, Linguistic Register Alignment, Phonographic Uniqueness and Recognizability, Morphological Complexity and Imageability, and Lexical Richness and Typicalness. Regression analysis indicated UHR speech is characterized by diminished sentiment variability (β = -0.07), deviation from linguistic registers (β = -0.16), fewer phonographic neighbors (β = -0.11), lower morphological complexity (β = -0.36), and more predictable lexical structures (β = 0.05). Optimized machine learning (ML) models trained on Boruta-selected features achieved a mean AUC of 0.70. Our findings highlight the potential of sentiment and linguistic analyses in speech for training ML models to aid in early detection and monitoring of mental health conditions.

摘要

精神疾病常常通过行为变化表现出来,言语是表达思想和情感的关键媒介。在精神疾病中对言语数据运用计算语言学是一种很有前景的方法,有助于发现用于早期检测精神疾病的客观生物标志物。本研究分析了80名超高危精神病青年(UHR)和329名健康对照者的言语记录,考察了诸如情感变异性、衔接性、词汇复杂性、形态学、句法复杂性和词汇多样性等文本特征。因子分析揭示了五个关键的语言主题:情感强度与变异性、语言语域一致性、语音独特性与可识别性、形态复杂性与形象性、词汇丰富性与典型性。回归分析表明,超高危精神病青年的言语具有情感变异性降低(β = -0.07)、偏离语言语域(β = -0.16)、语音邻接词较少(β = -0.11)、形态复杂性较低(β = -0.36)以及词汇结构更具可预测性(β = 0.05)的特点。在Boruta选择的特征上训练的优化机器学习(ML)模型的平均AUC为0.70。我们的研究结果突出了言语中的情感和语言分析在训练机器学习模型以辅助早期检测和监测心理健康状况方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验