Suppr超能文献

针对临床高危精神病青年的自动语言分析。

Automated linguistic analysis in youth at clinical high risk for psychosis.

作者信息

Kizilay Elif, Arslan Berat, Verim Burcu, Demirlek Cemal, Demir Muhammed, Cesim Ezgi, Eyuboglu Merve Sumeyye, Uzman Ozbek Simge, Sut Ekin, Yalincetin Berna, Bora Emre

机构信息

Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.

Department of Neurosciences, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.

出版信息

Schizophr Res. 2024 Dec;274:121-128. doi: 10.1016/j.schres.2024.09.009. Epub 2024 Sep 17.

Abstract

Identifying individuals at clinical high risk for psychosis (CHRP) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to identify them using natural language processing (NLP) methods. In this study, speech samples of 62 CHR-P individuals and 45 healthy controls (HCs) were elicited using Thematic Apperception Test images. The evaluation involved various NLP measures such as semantic similarity, generic, and part-of-speech (POS) features. The CHR-P group demonstrated higher sentence-level semantic similarity and reduced mean image-to-text similarity. Regarding generic analysis, they demonstrated reduced verbosity and produced shorter sentences with shorter words. The POS analysis revealed a decrease in the utilization of adverbs, conjunctions, and first-person singular pronouns, alongside an increase in the utilization of adjectives in the CHR-P group compared to HC. In addition, we developed a machine-learning model based on 30 NLP-derived features to distinguish between the CHR-P and HC groups. The model demonstrated an accuracy of 79.6 % and an AUC-ROC of 0.86. Overall, these findings suggest that automated language analysis of speech could provide valuable information for characterizing FTD during the clinical high-risk phase and has the potential to be applied objectively for early intervention for psychosis.

摘要

识别临床高危精神病个体(CHRP)对于预防精神病和改善精神分裂症的预后至关重要。CHR-P个体可能表现出轻度形式的形式思维障碍(FTD),这使得使用自然语言处理(NLP)方法识别他们成为可能。在本研究中,使用主题统觉测验图像引出了62名CHR-P个体和45名健康对照(HCs)的语音样本。评估涉及各种NLP测量,如语义相似性、类属和词性(POS)特征。CHR-P组表现出更高的句子级语义相似性,且平均图像与文本的相似性降低。关于类属分析,他们表现出言语冗长减少,句子和单词更短。与HC相比,POS分析显示CHR-P组中副词、连词和第一人称单数代词的使用减少,同时形容词的使用增加。此外,我们基于30个NLP衍生特征开发了一个机器学习模型,以区分CHR-P组和HC组。该模型的准确率为79.6%,AUC-ROC为0.86。总体而言,这些发现表明,语音的自动语言分析可为临床高危阶段FTD的特征描述提供有价值的信息,并有可能客观地应用于精神病的早期干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验