Lunsford Elias T, Carbo-Tano Martin, Wyart Claire
bioRxiv. 2025 Jun 17:2025.06.16.659910. doi: 10.1101/2025.06.16.659910.
From shifting visual scenes to tactile deformations and fluid motion, animals must interpret patterns of sensory flow around their body to construct stable internal models and produce adaptive behavior. Understanding of how such transformations are encoded within the brain remains incomplete. To tackle this question, we leverage the lateral line of larval zebrafish as a tractable sensory system sensitive to fluid motion that is used to steer navigation, feed, and avoid predators. By presenting stimuli of either direction to neuromasts along the body, we used high-resolution calcium imaging to map hindbrain responses. Unexpectedly, our findings challenge the notion that central lateral line processing lacks topographic structure by revealing a simple yet powerful principle centered on a egocentric spatial framework: the direction and location of local flow motions are encoded in reference to the animal's center-of-mass. This simple representation enables the brain to register complex flow patterns and provides a robust basis for subsequent behavioral action selection. MON neurons that encode flow toward the center-of-mass broadly project to form bilateral connections onto reticulospinal neurons that coordinate forward locomotion while MON neurons that encode flow away from the center-of-mass displayed a more selective and unilateral projection profile to command neurons for turns. Our discovery represents a shift from purely somatotopic encoding toward an integrative representation of axial position and directionality combined, revealing a novel principle of encoding spatio-directional cues in the hindbrain. This study advances our understanding of how complex mechanosensory inputs select appropriate motor outputs via simple egocentric neural maps in the hindbrain.
Spatial and directional cues are essential to select appropriate actions in response to changes in the environment. How information from broadly distributed mechanosensors across the entire body occurs in the brain enables motor selection remains elusive. By directionally stimulating each and virtually all neuromasts distributed along the lateral line of larval zebrafish, our study uncovers that spatial and directional inputs from each flow sensors is encoded in the medial octavolateralis nuclei relative to the animal's center-of-mass in order to subsequently recruit reticulospinal neurons driving forward and turn bouts. These results establish a new framework for understanding how broadly distributed inputs get integrated to recruit motor command neurons responsible for producing diverse behaviors.
从视觉场景的转换到触觉变形和流体运动,动物必须解读其身体周围的感觉流模式,以构建稳定的内部模型并产生适应性行为。然而,对于这种转换如何在大脑中进行编码的理解仍不完整。为了解决这个问题,我们利用斑马鱼幼体的侧线作为一个易于处理的感觉系统,该系统对流体运动敏感,用于引导导航、觅食和躲避捕食者。通过向身体沿线的神经丘呈现不同方向的刺激,我们使用高分辨率钙成像来绘制后脑的反应。出乎意料的是,我们的发现挑战了中央侧线处理缺乏拓扑结构的观点,揭示了一个以自我中心空间框架为核心的简单而强大的原则:局部流体运动的方向和位置是相对于动物的质心进行编码的。这种简单的表征使大脑能够记录复杂的流模式,并为后续的行为动作选择提供了坚实的基础。编码流向质心的MON神经元广泛投射,在双侧与协调向前运动的网状脊髓神经元形成连接,而编码远离质心的流的MON神经元则向控制转弯的命令神经元显示出更具选择性和单侧性的投射模式。我们的发现代表了从纯粹的躯体定位编码向轴向位置和方向性综合表征的转变,揭示了后脑编码空间方向线索的新原则。这项研究推进了我们对复杂机械感觉输入如何通过后脑简单的自我中心神经图谱选择适当运动输出的理解。
空间和方向线索对于根据环境变化选择适当行动至关重要。来自全身广泛分布的机械传感器的信息如何在大脑中产生以实现运动选择仍然难以捉摸。通过定向刺激沿斑马鱼幼体侧线分布的每个且几乎所有神经丘,我们的研究发现,来自每个流量传感器的空间和方向输入在内侧听侧线核中相对于动物的质心进行编码,以便随后招募驱动向前和转弯动作的网状脊髓神经元。这些结果建立了一个新的框架,用于理解广泛分布的输入如何整合以招募负责产生不同行为的运动命令神经元。