Suppr超能文献

EVscope:一种用于准确且稳健地分析细胞外囊泡总RNA测序的综合生物信息学流程。

EVscope: A Comprehensive Bioinformatics Pipeline for Accurate and Robust Analysis of Total RNA Sequencing from Extracellular Vesicles.

作者信息

Zhao Yiyong, Chintalapudi Himanshu, Xu Ziqian, Liu Weiqiang, Hu Yuxuan, Grassin Ewa, Song Minsun, Hong SoonGweon, Lee Luke P, Dong Xianjun

机构信息

Stephen & Denise Adams Center for Parkinson's Disease Research of Yale School of Medicine, New Haven, CT 06510, USA.

Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.

出版信息

bioRxiv. 2025 Jun 27:2025.06.24.660984. doi: 10.1101/2025.06.24.660984.

Abstract

MOTIVATION

Extracellular vesicle (EV) RNA sequencing has emerged as a powerful approach for studying RNA biomarkers and intercellular communication. Nevertheless, the extremely low abundance, fragmented nature and ubiquitous tissue origin of EV RNAs, alongside potential contamination from co-isolated materials, such as free DNA and bacterial RNA, pose substantial analytical challenges. These complexities highlight a pressing need for a standardized, computational workflow that ensures robust quality control and EV RNA characterization.

RESULTS

Here, we present EVscope, an open-source bioinformatics pipeline designed specifically for processing EV RNA-seq datasets. EVscope employs an optimized genome-wide expectation-maximization (EM) algorithm that significantly improves multi-mapping read assignment at single-base resolution by effectively leveraging alignment scores (AS) and local read coverage, specifically tailored for fragmented and low-abundance EV RNAs. Notably, EVscope uniquely generates EM-based BigWig files for downstream analysis, a capability currently unavailable in existing EM-based BigWig quantification tools. The pipeline systematically integrates 27 major steps, including quality control, analysis of library structure, contamination assessment, read alignment, read strandedness detection, UMI-based deduplication, RNA quantification, genomic DNA (gDNA) contamination correction, cellular and tissue source inference and visualization with a comprehensive HTML report. EVscope incorporates a comprehensive, updated annotation covering 19 distinct RNA biotypes, encompassing protein-coding genes, lncRNAs, miRNAs, piRNAs, retrotransposons (LINEs, SINEs, ERVs), and additional non-coding RNAs (tRNAs, rRNAs, snoRNAs). Furthermore, it leverages two highly balanced circRNA detection algorithms for robust circular RNA identification. Notably, a downstream module enables the inference of the tissue/cellular origins of EV RNAs using bulk and single-cell RNA-seq reference datasets. EVscope is implemented as a convenient, single-command Bash pipeline leveraging Conda-managed standard software packages and custom scripts, ensuring reproducibility and straightforward deployment.

AVAILABILITY AND IMPLEMENTATION

Code, documentation, and tutorials are available at GitHub (https://github.com/TheDongLab/EVscope) and archived on Zenodo (https://zenodo.org/records/15577789).

摘要

动机

细胞外囊泡(EV)RNA测序已成为研究RNA生物标志物和细胞间通讯的有力方法。然而,EV RNA的丰度极低、性质碎片化且组织来源广泛,再加上共分离材料(如游离DNA和细菌RNA)的潜在污染,带来了巨大的分析挑战。这些复杂性凸显了迫切需要一种标准化的计算工作流程,以确保强大的质量控制和EV RNA表征。

结果

在此,我们展示了EVscope,这是一个专门为处理EV RNA-seq数据集而设计的开源生物信息学管道。EVscope采用了优化的全基因组期望最大化(EM)算法,通过有效利用比对分数(AS)和局部读段覆盖度,显著提高了单碱基分辨率下的多映射读段分配,这是专门为碎片化和低丰度的EV RNA量身定制的。值得注意的是,EVscope独特地生成基于EM的BigWig文件用于下游分析,这是现有基于EM的BigWig定量工具目前所不具备的功能。该管道系统地整合了27个主要步骤,包括质量控制、文库结构分析、污染评估、读段比对、读段链特异性检测、基于UMI的重复数据去除、RNA定量、基因组DNA(gDNA)污染校正、细胞和组织来源推断以及通过全面的HTML报告进行可视化。EVscope纳入了涵盖19种不同RNA生物类型的全面、更新的注释,包括蛋白质编码基因、lncRNA、miRNA、piRNA、逆转座子(LINEs、SINEs、ERVs)以及其他非编码RNA(tRNA、rRNA、snoRNA)。此外,它利用两种高度平衡的环状RNA检测算法进行稳健的环状RNA鉴定。值得注意的是,一个下游模块能够使用批量和单细胞RNA-seq参考数据集推断EV RNA的组织/细胞来源。EVscope被实现为一个方便的单命令Bash管道,利用Conda管理的标准软件包和自定义脚本,确保可重复性和直接部署。

可用性和实现方式

代码、文档和教程可在GitHub(https://github.com/TheDongLab/EVscope)上获取,并在Zenodo(https://zenodo.org/records/15577789)上存档。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b524/12262516/eac16dbadfc5/nihpp-2025.06.24.660984v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验